

AFRL-RY-WP-TR-2012-0038

BOOTSTRAPPED LEARNING ANALYSIS AND CURRICULUM
DEVELOPMENT ENVIRONMENT (BLADE)

Howard Reubenstein, Dan Hunter, and Kathy Ryall

BAE Systems, Inc.

FEBRUARY 2012
Final Report

Approved for public release; distribution unlimited.

See additional restrictions described on inside pages

STINFO COPY

©2012 BAE Systems, Inc.

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the Defense Advanced Research Projects
Agency (DARPA) and is available to the general public, including foreign nationals. Copies
may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RY-WP-TR-2012-0038 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH THE ASSIGNED DISTRIBUTION STATEMENT.

*//Signature// //Signature//
DR. PHILIP D. MUMFORD, Project Engineer JUAN M. CARBONELL, Chief
Distributed Collaborative Sensor System Distributed Collaborative Sensor System
 Technology Branch Technology Branch

//Signature//

TODD A. KASTLE, Chief
Integrated Electronic and Net-Centric Warfare Division
Sensors Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//signature//” stamped or typed above the signature blocks.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

February 2012 Final 31 July 2007 – 31 October 2011
4. TITLE AND SUBTITLE

BOOTSTRAPPED LEARNING ANALYSIS AND CURRICULUM
DEVELOPMENT ENVIRONMENT (BLADE)

5a. CONTRACT NUMBER

FA8650-07-C-7722
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

62304E
6. AUTHOR(S)

Howard Reubenstein, Dan Hunter, and Kathy Ryall
5d. PROJECT NUMBER

2000
5e. TASK NUMBER

SC
5f. WORK UNIT NUMBER

BOLESC01
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

BAE Systems, Inc.
6 New England Executive Park
Burlington, MA 01803

8. PERFORMING ORGANIZATION
 REPORT NUMBER

TR-2764

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
ACRONYM(S)

Air Force Research Laboratory
Sensors Directorate
Wright-Patterson Air Force Base, OH 45433-7320
Air Force Materiel Command
United States Air Force

Defense Advanced Research Projects Agency
Information Innovation Office (DARPA/I2O)
3701 N. Fairfax Drive
Arlington, VA 22203-1714

AFRL/RYWC

11. SPONSORING/MONITORING AGENCY
REPORT NUMBER(S)

AFRL-RY-WP-TR-2012-0038

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES
DARPA PAO Case Number: 18991, cleared 06 April 2012. ©2012 BAE Systems, Inc. This work was funded in whole or in part by Department of the Air Force
Contract FA8650-07-C-7722. The U.S. Government has for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable worldwide license to use,
modify, reproduce, release, perform, display, or disclose the work by or on behalf of the U. S. Government. Report contains color.

14. ABSTRACT

DARPA’s Bootstrapped Learning (BL) program was a research effort to build and evaluate an electronic learner (e- student) that can be instructed
by a human in the style of human-mentored learning. The BAE Systems' team was responsible for evaluation, curriculum construction, and
instructional mechanisms of the BL program. An independent Learning Team was responsible for the machine learning (ML) algorithms. This
report presents BAE Systems' results in developing instructional materials to test the e-student, evaluating the e-student’s learning results against
control human subjects, and developing instructional techniques and mechanisms to teach the e-student. Overall program results demonstrate that
natural instruction is a powerful and concise alternative to typical instructional input provided to current ML systems; they also point to the
feasibility of constructing individual learning methods that can take advantage of multiple types of instructional input. In the future, we recommend
focusing on learning and performance in a specific domain (e.g., ISR analysis) as it would (1) provide the opportunity to overcome the limitations
discussed in this report, (2) stretch the bootstrapping approach to an extended training regimen (extended over both time and conceptual coverage),
and (3) provide the opportunity to assess success in a concrete domain with specific success criteria.

15. SUBJECT TERMS
Bootstrapped Learning, machine learning, instructable computing, learning performance evaluation

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 56

19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

Dr. Philip D. Mumford
19b. TELEPHONE NUMBER (Include Area Code)

N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

i
Approved for public release; distribution unlimited.

Table of Contents

Section Page

List of Figures .. iii
List of Tables ... iii
Acknowledgements... iv
1.0 Summary .. 1

2.0 Introduction.. 4

3.0 Methods, Assumptions, and Procedures .. 6

4.0 Results and Discussion .. 9

4.1 BL Languages .. 9

4.1.1 InterLingua (IL) .. 9

4.1.2 InteracTion Language (ITL) ... 13

4.1.3 Curriculum Language (CL)... 14

4.1.4 Language Evolution and Implementation ... 16

4.1.5 Uses Outside of the BL Framework.. 17

4.2 Natural Instruction Methods (NIMs).. 17

4.2.1 NIM Types .. 18

4.2.2 Assessing the NIMs .. 20

4.2.3 Conclusions... 21

4.3 BL Automatic Teacher and Framework ... 22

4.4 Diversity Domains (and Simulators).. 24

4.4.1 Blocks World .. 25

4.4.2 Unmanned Aerial Vehicle (UAV) .. 26

4.4.3 Armored Task Force (ATF) .. 26

4.4.4 International Space Station (ISS) (Version I) ... 27

4.4.5 International Space Station (version II) (ISS-II)... 28

4.5 Hidden Domain (and Simulators) .. 28

4.5.1 Development Process.. 29

4.5.2 Content and Curriculum.. 29

4.5.3 Phase 3 NIM Relaxation Trajectories ... 30

4.5.4 Hidden Domain – Diversity Domains Comparison .. 30

4.6 BL-ISR ... 30

ii
Approved for public release; distribution unlimited.

4.6.1 ISR Analysis Background... 31

4.6.2 ISR Scenarios.. 31

4.6.3 System Architecture.. 32

4.6.4 Analysis and Instruction Stages .. 33

4.6.5 Instruction Techniques.. 33

4.6.6 Situated Instruction ... 34

4.7 Evaluation... 35

4.7.1 Approaches to Instruction (Phase 1) ... 36

4.7.2 Human Benchmark Experiments (Phases 2 and 3)... 37

4.7.3 BL Student Performance (Phases 2 and 3) ... 38

4.8 Seedling Efforts.. 38

4.8.1 Framework Adoption .. 38

4.8.2 PROWL... 38

5.0 Conclusions and Recommendations .. 40

BIBLIOGRAPHY... 42

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS ... 44

iii
Approved for public release; distribution unlimited.

List of Figures

Figure Page

Figure 1: The Three Agents of our BL Framework .. 5
Figure 2: Structure of a BLCurriculum... 15
Figure 3: The BL-ISR Architecture .. 32
Figure 4: The Three Stages in BL-ISR Analysis and Instruction ... 33
Figure 5: Screenshot of the BL-ISR Instructional Interface ... 35

List of Tables

Table Page

Table 1: WOz Observations for a Human Teacher Instructing an E-Student............................... 36

iv
Approved for public release; distribution unlimited.

Acknowledgements
The following institutions joined BAE Systems as part of our BLADE team and we would like
to acknowledge their contributions to the work described herein:

Institution Principal

Cycorp, Inc. Michael Witbrock & Jon Curtis

University of Texas at Austin Dewayne Perry

Stottler Henke Associates, Inc. Dan Fu & Jeremy Ludwig

Soar Technology, Inc. Mike van Lent

SRI International Michael Freed

Teknowledge Corporation Robert Balzer

Sarnoff Corporation Hui Cheng & Chumki Basu

1
Approved for public release; distribution unlimited.

1.0 Summary
The DARPA Bootstrapped Learning (BL) program [1] was a research effort to build and evaluate
an electronic learner who can be instructed by a human instructor in the style of human mentored
learning (or, to support automated testing, by a machine instructor using natural instruction
methods). The motivating goal of this effort was to support modification of systems via field
instructability (versus programmed revision by the developers). The functionality of computer
systems and devices as programmed by their developers often is rendered out of date, incomplete
or obsolete particularly in the case of military systems fielded to be applied in constantly evolving
situations against adversaries who adapt to our tactics. We denote our approach to field
instructability as instructable computing because the learner is a computational entity acquiring
executable knowledge by being taught/instructed rather than being programmed. The goal is to
learn using the “same” instruction methods used between humans (as opposed, for example, to
traditional machine learning techniques which are based on processing hundreds, if not thousands
or more, annotated examples as supervisory input). Human-mentored learning is primarily based
upon communication from an instructor, who has knowledge of the target of learning, to a student
that does not have such knowledge.

The BAE Systems team was responsible for curriculum construction, instructional mechanisms,
and advising the government on the evaluation of the BL program. The co-contractor team led
by SRI International was responsible for the machine learning algorithms. The objective of this
report is to present BAE Systems’ results in developing instructional materials to test the SRI
International learner (MABLE) [2], evaluating the results of learning of the electronic student
and of control human subjects, and developing instructional techniques and mechanisms used to
teach the electronic learner. The report covers a broad range of efforts, including the following
four topics which are central to the BL approach:

 Natural Instruction Methods (NIMs) – the BL program uses supervisory input that goes
well beyond the standard annotated corpora of examples. NIMs are defined protocols that
guide the content of information exchange between an instructor and the electronic
student. They govern the type of information that can be presented, the control vocabulary
for the instructional interaction (though not the information content – this remains
flexible), and the order of interaction. A powerful example of a NIM protocol is the
relevance annotation which allows specifying attributes or predicates relevant to learning a
concept. Relevance declarations allow a learner to focus its efforts and support learning-
by-example (and specifically from a very concise set of pedagogically selected examples).

 Curriculum – curriculum definitions support automated testing of the learning system. A
curriculum is a hierarchical structure for teaching concepts that build upon each other
(i.e., bootstrapping). Individual concepts are defined in the curriculum via a set of
parameterized instructional utterances that can be used to teach the concept. Curriculum
artifacts contained enough detail to enable the automated teacher to effectively instruct
the learning system. While the ultimate goal of the project is to support human
instruction, the curriculum we developed serve as a corpus of training and testing
examples that can be used to support future efforts to develop alternate bootstrapped
learning algorithms.

2
Approved for public release; distribution unlimited.

 Domains – the BL learning approach is domain independent. Nevertheless, the program
needed to choose specific domains and tasks to drive the instructional interaction. We
developed a number of domains including: Blocks World, Unmanned Aerial Vehicle
(UAV) control, International Space Station (ISS) subsystem control diagnosis, military
ground movement planning (Armored Task Force (ATF)), and satellite ground station
control diagnosis and repair. Selection of these domains proved critical to developing
domain independent learning techniques as they require solving a breadth of problems
(as opposed to focusing on a single domain – which would have resulted in teaching, and
learning to the test). Proof of the domain independence of the learning techniques was
provided by successful performance on the hidden domain (satellite ground station
control).
Development of multiple domains also revealed some fundamental modeling differences
for these domains in terms of fundamental features such as: synchrony of actions,
percept modeling of domain state, and causal proximity of actions.

 Situated instructional interface – as the program proceeded, more emphasis was
placed on instruction by human agents (as opposed to the automated teacher). A
prototype instructional interface was developed as part of the BL Intelligence,
Surveillance, and Reconnaissance (BL-ISR) application domain. Initial efforts at a
disembodied conversational interface proved much less successful than the instructional
interface situated in the interface of the BL-ISR domain simulator. Situated instruction
allows an analyst to perform instruction more effectively as part of the overall task being
performed.

This report also describes an ancillary effort executed as part of the program. We present BL-
ISR, an application of BAE Systems’ instructable computing approach with potential to
improve the productivity of ISR analysts.

Finally, we report on a pair of seedling efforts (Probabilistic Relational Ontological Web
Language (PROWL) and Framework Adoption) that explored approaches to system
longevity, complementing the instructable computing approach taken in the BL program.

The overall results of the BL program demonstrate that natural instructional input is a
powerful and concise alternative to typical instructional input provided to current machine
learning (ML) systems. Natural instruction provides a variety of methods of teaching
including: by-example, by-telling, and by-feedback. Instructional input was provided via
curriculum definition, via
command line interface, via situated interface, and even via natural language input. Each of
these instructional techniques was validated as capable of providing the information necessary
for concept acquisition. However, since the form of instructional input is so much more varied
than, e.g., simple positive and negative training data, it does require definition of protocols
(natural instructional methods) for the exchange of instructional content, along with interface
mechanisms to facilitate provisioning of this information from a context that includes relevant
objects and relations. The results also point to the feasibility of constructing individual
learning methods that can take advantage of certain types of instructional input.

The greatest remaining challenge, however, is to develop effective methods for individual
learners to integrate their partial results to provide a unified result of learning. If the learning
task is thought of as literally learning a program to accomplish a particular task or recognize a
certain concept (which in fact is what the BL learners produced as their result of learning),

3
Approved for public release; distribution unlimited.

then integration of learning results amounts to the different learning modules authoring
different partsof the resultant program and combining the individual pieces into a single
whole. Integration of learning results remains an unsolved challenge.

4
Approved for public release; distribution unlimited.

2.0 Introduction
The BL program was a Defense Advanced Research Projects Agency (DARPA) initiative aimed
at advancing the state of the art in instructable computing. Its primary objective was to build an
electronic student (e-student) that could be taught by a human instructor in the same ways that
humans instruct one another. As BL would provide natural ways for a human to impart
knowledge to a software learner, it would reduce or even remove the need for programming
expertise; human instruction of e-students will make it possible to delegate tasks to computers
that cannot be easily delegated today and will enable users to rapidly modify deployed systems.

BL differs from other kinds of ML in several ways. Current ML is primarily a modeling tool; it
is used to build models when we know something, but not everything, about some target
problem. Current ML is a process of discovery, and requires induction over large datasets to
induce its models. There is no guarantee that target knowledge will be discovered. BL enables
users to impart the target knowledge in a more direct fashion; moreover, because it involves
"natural" ways to impart knowledge, it does not require programming expertise. BL supports
conceptual bootstrapping; it leads to meaningful intermediary levels of learned concepts. E-
students learn laddered-curricula in which lessons build on previous lessons, whereas in current
ML, learning is generally from unstructured data. Like its human counterpart, an e-student
assumes all necessary knowledge is possessed by the instructor, and its goal is to learn using the
"same" instruction methods used between humans.

Two teams performed in parallel to explore this new learning paradigm. Roughly divided, the
Learning Team, led by SRI International, was charged with developing the e-student,
incorporating several learning strategies [2,3,4]; the Curriculum Team, led by BAE Systems,
developed the curricula that the e-student was expected to learn, an electronic teacher to execute
the curricula (i.e., automatically instruct), and a framework that supports interactions between the
two electronic agents. BAE Systems also conducted experiments to evaluate various aspects of the
program, including an evaluation of the e-student for both hidden and known domains. The two
teams worked together to define the formal language and the natural instruction methods
used by both teams (either in teaching the curricula or learning from them). This report focuses
on the activities and results of the Curriculum Team.

Our BL framework includes three agents, whose interactions and relationships are shown in
Figure 1. A teacher agent serves as a proxy for an eventual human teacher, instructing and
testing the e-student; the automated teacher eased scaling and reproducibility for evaluation. The
student agent is the embodiment of the e-student, typically employing a number of learning
algorithms. The world agent serves as a proxy for a domain simulator. Over the three phases of
the BL program we developed a set of laddered curricula in a variety of complex domains
including Blocks World, UAV, diagnosis tasks for an ISS, ATF, planning robotic arm movements,
and a hidden domain – satellite ground station monitoring and configuration. The hidden domain
was kept secret from the Learning Team and used for formal testing and evaluation.

5
Approved for public release; distribution unlimited.

Figure 1: The Three Agents of our BL Framework

As part of the BL framework, we developed IL (InterLingua) and ITL (InteracTion Language)
[5, 6] to pass messages between agents in the BL framework. The e-student used a variety of
machine learning algorithms to learn how to solve tasks in an arbitrary domain, where the
automated-teacher instructed with a set of formally defined NIMs. For example, in using the
teaching by example NIM the instructor may make gestures at relevant problem attributes,
demonstrate actions in the domain, and provide explanations for why actions were taken. Human
subjects were trained and tested using a human-accessible version of the hidden domain
curriculum to serve as a benchmark against which the e-student could be measured.

In addition to its core tasking (i.e., framework, curricula and e-student evaluation), the
Curriculum Team conducted early experiments to explore approaches humans take for
instructing others, two seedling efforts on technology complimentary to instructable computing,
and completed a stand-alone BL-ISR prototype to explore and illustrate how BL might be used
in practice by a human operator.

6
Approved for public release; distribution unlimited.

3.0 Methods, Assumptions, and Procedures
The BL program encompassed a range of experimental, empirical, evaluation and proof of
concept tasks and a range of methods and procedures to achieve them. These include the
following:

Software development activities:

 Definition of the core BL communication languages
 Development of the BL framework
 Development of the automated teacher

The software development aspect of the BL program was conducted primarily in the Java
programming language and followed the standard BAE Systems research process model. The
distinguishing feature of these development efforts was our close collaboration with the SRI
International e-student team (often referred to simply as the Student Team). While the
evaluation tasks in the project required a more arms-length approach, the development of
software to integrate and test the e-student within the BL environment was conducted as a
collaborative effort between BAE Systems and SRI International with SRI International helping
BAE Systems to prioritize development tasks and with BAE Systems providing incremental
releases to SRI International to facilitate their internal testing efforts.

Evaluation activities:

 Human benchmark evaluations
 E-student evaluations

The program evaluation tasks were structured to vet both the capabilities of the e-student and to
calibrate the difficulty of the testing scenarios. Human benchmark evaluations were used to
calibrate the test curriculum so that they were neither too hard (human could achieve a minimum
of 80% success after training in the domain) nor too easy (human did not score greater than 20%
before training). These test curricula were then used to test the e-student, which was required to
demonstrate at least 75% of the human performance in order to be considered to have passed the
tests. Testing also involved a hidden domain which the Student Team did not have access to.
The potentially completely blind nature of this testing was mitigated by testing the e-student on
diversity domains, access to which was shared with the Student Team. Informally, the diversity
domains tested a range of learning problems including problems analogous to what would be seen
in the hidden domain. The informal intuition behind this setup was that a learner that could pass
the diversity domain testing should be able to pass the hidden domain testing (and this informal
intuition was accompanied by an extensive analysis in Phase 2 to document the analogical
similarity between diversity domains and the hidden domain).

Test data / case creation activities:

 Development of natural instruction method protocols
 Development of diversity domains and simulators
 Development of the hidden domain and simulator

Development of test data for this program involved a combination of programming-like activities
and instructional material development. Natural instruction method protocols were developed to
govern the testing interaction. NIMs are protocols in the computer science sense with precise

7
Approved for public release; distribution unlimited.

definitions and they are also cognitively inspired by human-to-human instructional techniques.
Testing also required development of a computation simulator for the domains under test. Test
domains were rich domains with a range of objects, actions, and side effects. Manipulation of
blocks is an example of a very simple domain and even that required simulators. The only
domain we imagined that would not have required a simulator would have been a purely abstract
domain such as mathematical performance. The final component of producing test data was the
production of curriculum in the various domains. These tasks required a combination of
knowledge acquisition (to learn about and define the domain) and pedagogical construction of
hierarchically structured curriculum lessons (the hierarchical structuring being crucial to
demonstration of the “bootstrapped” nature of the learning approach).

Proof of concept activities:

 Development of the BL-ISR demonstration system

In Phase 3 we combined the results of previous phases and our observation about what would be
required to support instructional interactions with humans to produce a demonstration system of
BL techniques applied in a situational instruction context to problems of ISR intelligence
analysis. This activity was grounded in knowledge acquisition sessions with intelligence
analysts, based on simulated Ground Moving Target Indicator (GMTI) data provided by the Air
Force Research Laboratory (AFRL), and influenced by interactions with the GMTI analysis
community.

In parallel to our primary BL activities, we conducted a pair of seedling efforts (Framework
Adoption and PROWL) to explore approaches to system longevity, complementing the
instructable computing approach taken in the BL program.

Seedling activities:

 Framework Adoption
 PROWL

The Framework Adoption problem reduces to the problem of transferring knowledge of a
software framework to individual engineers. Many methods of acquiring knowledge of software
exist from instruction to self-study to trial-and-error. All of the existing methods have their
drawbacks and most take the engineer off-task while engaging in learning. We proposed that all
these methods may be augmented by machine assistance. Our approach had two main thrusts: use
machine learning to discover the implicit idioms, conventions, and best practices for the use of a
software framework and provide the engineer with context-sensitive GUI assistance that provides
the relevant framework knowledge just-in-time.

PROWL investigated application and extensions of social computing technologies to empower
users. Under the guidance of its DARPA Program Manager it had two thrust areas. The first, the
primary emphasis of our seedling effort, explored a new approach to searching large corpora of
text to find relevant information exploiting a new approach to semantic markup. The end goal of
a full PROWL program for Thrust 1 would be to provide automated cataloging for users to
access available knowledge—data with context and understanding. The goal of our seedling
effort was to demonstrate system concept feasibility. Our approach was to use the Army
Knowledge Online (AKO) as a platform to demonstrate PROWL concepts. The second thrust,
which represented a smaller effort, explored potential synergies between augmented reality and
three social computing concepts, shared sensing, collaborative analysis, and coordinated action.

8
Approved for public release; distribution unlimited.

Data collected through these technologies, alone and in concert, might be used to augment data
from a more standard catalog, such as the AKO used in Thrust 1. Our approach for this secondary
effort was to develop a number of use cases to illustrate their potential use and impact, and to
identify supporting technologies that could be used to amplify them.

9
Approved for public release; distribution unlimited.

4.0 Results and Discussion

4.1 BL Languages

One of the major products of the BL program is a family of languages used for communication
between BL components, including agents such as e-students and electronic teachers, and
components within the e-student, including learning algorithms. These languages are either
dialects of or have their origins in BL IL, an object-oriented language first developed during the
initial BL Seedling (executed by Cycorp before initiation of the Bootstrapped Learning
program). We begin by describing that language and its role in the program, and follow with
separate discussions of its notable dialects and a summary of its evolution and contributions to
the program.

4.1.1 InterLingua (IL)

4.1.1.1 Overview
The BL IL is the most general language used in the BL program, and is used either directly or
indirectly by every electronic agent (i.e., teacher, student, world (simulator)) in the BL
framework. For example, interactions between agents are represented using the ITL, a dialect of
IL, and curricula are codified as IL objects and contain sub-routines that are either IL programs
or call outs to IL programs when building Interaction Language messages.

Apart from serving as a basis for these specialized dialects, to be discussed in more detail below,
IL played the key role of serving as the language for representing the knowledge that the
instructor intends to impart to the student. Conceptually, the instructor wishes to impart a
capability to the student. The teacher, being an electronic agent acting on behalf of the
instructor, has a model of this capability in the form of a procedure. The student’s goal is to
construct a functionally equivalent, and executable, model of this capability. In the BL program,
both the teacher’s model (often referred to, slightly imprecisely, as “injected knowledge,” since,
if necessary, it can be loaded into the student directly) and the student’s learned model (often
referred to as the “results of learning,” or ROL) are codified in IL.

The requirement for the student to codify its ROL in IL was a major driver in IL design. First, IL
supports key programming idioms, such as if/then/else and while loops, as well as declarative
(logic-like) structures. IL classes are first-class objects in the language, to support the possibility
of allowing a student to “reason about” the class hierarchy so that, e.g., it might sensibly estimate
what IL “methods”1 are most appropriate to try when solving a certain class of problem. Finally,
IL classes can be associated with execution environments declaratively, so that the student can
build its own class and decide, autonomously, how to implement semantics for that class.

4.1.1.2 Summary of Language Features
IL is a class-based, object-oriented language. Accordingly, each formula of the language can be
thought of as a typed object, called an IL object. Each IL object falls exclusively into one of
three categories: it is an atom, such as a string, integer, float, or symbol; a composite: an object

1 In IL, the notion of a method most closely correlates to a family of executable IL classes.

10
Approved for public release; distribution unlimited.

formed by applying an implicit constructor for a given class to zero or more IL objects; or a list
of IL atoms and/or composites.

The reference implementation of IL provided by the curriculum team comes with an IL parser
and process virtual machine (VM), the IL VM, that enforces typing, resolves symbols to objects,
and “directs” executable code to the proper interpreter.

The General Structure of IL Objects

A composite IL object can be thought of as a recursive structure, in the sense that each such
object is parameterized, and the values for those various parameters are themselves IL objects.
These parameters are analogous to Java class data members or to fields in a C structure. Here is
an example composite IL object from Blocks World, an instantiation of the class Block:

Block(name=“block1”,support=Block(name=“block2”,color=“red”))2

This object contains two IL objects: an atom (the string “block1”) and one composite object,
Block(name=“block2”,color=”red”). The second composite, in turn, contains two atoms:
“block2” and “red”. The symbols name, support, and color are parameters to which
“block1”, Block(name=“block2”,color=“red”), and “red”, and have been assigned
respectively as values.

Assignment of a value to a parameter in a structure instantiation is tantamount to ascribing a
property to an object For example, our instantiation of Block carries with it facts about the
instance: It can be referred to using the symbol block1, and it is supported by the block block2,
which is red.

An intended benefit of the recursive structure of IL objects is the ability to have a uniform
interface to accessing IL objects through the fields of “subsuming” IL objects. This accessor is
implemented in IL via a GetField command that takes an IL object and a symbol (a field name)
and returns the value of that field. For convenience, a “.” operator allows for arbitrarily deep
references through IL object fields. For example,

block1.support

is a reference to block2, while

block1.support.color

is a reference to “red”.

IL Classes

A notable feature of IL is that IL classes can be declared piecemeal. The Is operator allows one
to define a new class and place it in the class hierarchy, or to take an existing class and place it
underneath multiple classes, so as to effect multiple-inheritance. For example, given the
existence of the class Animal, one can define a new class Person as a sub-class:

2 This example is designed to illustrate the way in which IL objects can structurally subsume one another.
The example does not cover all possible forms of IL objects or valid ways of writing IL; see “IL Parsing
and Printing” [7] for a full specification.

11
Approved for public release; distribution unlimited.

Is(Person,Animal);

One can then define Person as a sub-class of Intelligent:

Is(Person,Intelligent);

This enables the Person class to inherit parameters from both classes.

Parameters can also be explicitly defined for a new class, again in piecemeal fashion, via the
operator arg. For example,

Arg(Person,almaMater,School);

defines the almaMater parameter for Person, and constrains its values to objects that instantiate
the School class. This means that any valid instantiation of Person can be assigned an
almaMater of the appropriate type, in addition to any parameter defined for its super-classes.
For example, assuming that Animal has a parameter, ageInYears, that takes an integer, one can
instantiate Person with an IL object:

Person(name=Bob,ageInYears=32,almaMater=UniversityOfMinnesota)

IL Evaluation

For some IL classes—specifically, those that represent executable commands or functions—it is
desirable to assign an interpreter that can be used to execute instances. Again, this assignment can
be done declaratively in IL, using the defCode operator. defCode requires three arguments: a
class name (the class whose instances will be evaluated by the interpreter), a pointer to an engine,
and a “chunk” of code. For example,

defCode Plus Native NativeBody(code=Arithmetic);

When an actual argument list, e.g., Plus(2,3) is interpreted, the engine behind the Native
engine pointer looks up the relevant code in the code chunk pointed to by Arithmetic. That
engine runs its code on the values 1 and 2 and updates the evaluation context with a new Number
construct with its result. Thus, for example, Plus(2,3) evaluates to an invocation of addition
(i.e., Plus instantiated with arguments 2 and 3):

Plus(args=2,3,name=“plus-344”,returnValue=5).

The astute reader will observe that in this example, the result of executing Plus here is an
updated Plus object that carries with it its returnValue, and not the value itself (5). This
perhaps unusual feature of the language was intended to support learning, by minimizing
information loss (specifically, by generating a record the student can inspect of what functions
were called and which operations were executed. This supports student “experimentation” with
code during ‘by Feedback’-style instruction. Over the course of the BL program, however, this
level of information preservation was deemed to be less useful to the student than had been
anticipated, and a cause for slowness within the BL framework. As a result, this feature was
eliminated.

In the example defCode above, we call out to a pre-defined chunk of code that is supported by
the Native engine. However, IL was designed to allow its users, including (especially) the e-
student, to write arbitrary code. For example, the code for the CalcHypot class could be
represented in the following defCode declaration:

12
Approved for public release; distribution unlimited.

defCode CalcHypot Function
FunctionBody(expression=Sqrt(Plus(Expt(a,2),Expt(b,2))));

In the typical case, the e-student was expected to learn defCode declarations that were
compositional in this way, building upon previously learned defCode declarations and adjustable
by various learning algorithms within the student.

IL Packages

All IL objects, including class and code declarations, are relativized to a specialized object
known as a Package. Package objects can be thought of as “bundles” of declarations organized
into a hierarchy. A package “below” another package inherits the contents (the objects) of the
“higher” package. This sort of inheritance can be illustrated by thinking about how packages
affect the ability of an IL VM to dereference the names of IL objects: if Package-1 contains the
object Object(name=obj1), and if Package-2 contains the object Object(name=obj2), and
Package-3 inherits from Package-1 and Package-2, then the following claims about the names
‘obj1’ and ‘obj2’ can be made:

 In Package-3, the names ‘obj1’ and ‘obj2’ will be recognized as names of objects, and
parsed to Object(name=obj1) and Object(name=obj2), respectively.

 In Package-1, the name ‘obj1’ will be recognized and parsed to Object(name=obj1).
The name ‘obj2’ will not parse to an object, and will be understood as a bare symbol,
obj2.

 In Package-2, the name ‘obj2’ will be recognized and parsed to Object(name=obj2).
The name ‘obj1’ will not parse to an object, and will be understood as a bare symbol,
obj1.

The purpose behind the package mechanism was to enable the e-student to formulate competing
hypotheses about the concept it is learning. That is, as a result of instruction, the student might
have two possible interpretations of the semantics of some concept (i.e., two competing defCode
declarations), and the package mechanism allows it to maintain both without contradiction. A
secondary benefit of packages was to support the implementation of injected knowledge – that is,
if the student needed to be “handed” the teacher’s interpretation of the target concept to be taught
(a strategy designed to allow the student to be imperfect, and “fail” an intermediate test yet still
“carry on” without necessarily failing the entire curriculum). This could be accomplished simply
by given the student access to the teacher’s package for that knowledge.3

As noted above, in instruction as viewed in BL one can think of there being a target capability
(or “concept” to use BL vernacular) that the instructor intends to impart to the student. The
teacher has its own internal model, or codification of this capability represented as a series of Is,
Arg, and defCode declarations. Rather than just “handing over” this internal model to the
student, the programmatic goal of BL was to produce a student that could build a functionally
equivalent model through instruction. This requires a language for communicating between the

3 Originally, this was accomplished by simply adding a package inheritance declaration, making this an
elegant solution to the Injected Knowledge problem. However, as the program moved towards a fully
distributed system (with the teacher and student running on different VMs), the sharing of knowledge was

13
Approved for public release; distribution unlimited.

accomplished by serializing the package. student and teacher, and for communicating facts about the
shared, simulated environment and changes to that environment. It is to this language, the
InteracTion Language, which we now turn.

4.1.2 InteracTion Language (ITL)
ITL is a dialect of IL used for inter-agent communication. For details on ITL the reader is directed to the
BAE Systems Technical Report “Bootstrapped Learning Interaction Language” [5], the canonical
documentation source for ITL. Here we provide an overview.

Though the ITL language contains many constructs – many of which are specific to Natural
Instruction Methods (Section 4.2) – at the most general level of description, the language
consists of four main classes. These classes serve to bundle up information about the simulated
environment or to express “spoken” forms of communication between agents. These classes are
all extensions of a top level ITL class, Message:

 Perception messages contain information about what an agent can currently discern
about objects in the simulated world, such as their relative location.

 Action messages reflect “atomic” activities, such as which simulator commands have
been executed, that can be presumed to be detectible by an electronic agent. (These are
distinguished from full-blown tasks that are implemented, in part, by the execution of
simulator commands – such tasks are not directly perceivable, and so are not “given” in
Action messages.) To disambiguate the doer of an Action, the class is actually sub-
classed into specialized TeacherAction and StudentAction classes, specific to the
teacher and the student, respectively.

 Utter messages allow agents to express truth-evaluable claims about the world.
 Imperative messages allow agents to give commands to one another.

These classes all inherit source and addressee parameters from Message, which allows the BL
framework to direct messages to their appropriate recipient. Together, these message-types can
generate a useful model of teacher-student-world interactions. Consider a brief example of a
fictitious interaction sequence from Blocks World:

The Blocks World simulation starts and all agents receive a Perception of the initial world
state, a table with a block, a, on the table, and a claw:

Perception(
perceptsGained=
[Table(name=table),Block(name=a,support=table),Claw(name=claw,holds=NIL)],
perceptsLost=NIL)

The teacher then begins to execute a simple “lift block” routine. This is accomplished by
sending a request, in the form of an Imperative message, to the simulator. This message,
addressed only the simulator proxy agent called “theWorld,” is not visible to the student.

Imperative(
addressee=theWorld,
source=theTeacher,
request=LiftBlock(block=a))

14
Approved for public release; distribution unlimited.

In response, the simulator executes the first of the two low-level actions of the routine, which are
reported as Action messages credited to the teacher:

TeacherAction(
action=Grasp(grasped=a))

As a result, the simulated “world state” changes: a is now in the clutches of the claw:

Perception(
perceptsGained=[Claw(holds=a)],
perceptsLost=[Claw(holds=NIL)])

The teacher then articulates this fact to the student (who, we’ll suppose, is being taught what “in”
means in this context, and for which this state is an example from which the student can learn):

Utter(
addressee=the-student,
source=theTeacher,
utterance=In(a,claw))

The simulator next executes the second of the two low-level actions that make up the “lift block”
routine, reporting this back to the timeline as a teacher action:

TeacherAction(
action=Raise())

The world state changes, and again the teacher comments on this change:

Perception(
perceptsLost=
[Block(name=a,support=table)],

perceptsGained=
[Block(name=a,support=NIL)])

Utter(
addressee=the-student,
source=theTeacher,
utterance=Raised(raised=a))

The relative temporal ordering of messages is modeled by their order on a Timeline object that
is generated for each instructional sequence. Additionally, messages can be assigned a
timestamp to generate more concrete temporal information.

4.1.3 Curriculum Language4 (CL)
CL is used to codify instructional materials for consumption by the student in the BLADE
framework. At the most general level, a codified curriculum consists in the following set of
objects:

4 For detailed information about CL, the reader is directed to “Bootstrapped Learning Curriculum
Language” [8].

15
Approved for public release; distribution unlimited.

 Injected Knowledge, which consists of the teacher’s IL formalization of the capability
(or “concept”) to be taught.

 Generators, which are executable programs that generate sequences of Message objects
(see the section on ITL, above) for consumption by the simulator and student. Generators
come in two varieties, Static Segment Generators, which play a fixed sequence of
messages, and Message Generators, which may produce different message-sequences in
response to changes in/reactions from the world state/student.

 Lessons, which invoke generators to produce a sequence of messages.
 Tests, which pose problems (see the discussion of Imperative messages above) for the

student to solve, for the purpose of evaluating whether the student has acquired a
functionally equivalent representation of the target capability

 The Curriculum itself – an object that associates lessons and tests with their target
concepts (the Injected Knowledge) and orders those concepts in a hierarchy, based on
which concepts are prerequisites for others. Within the program, a metaphor of a ladder
was used to describe this hierarchy.

Figure 2 reproduces a diagram from the “BL Curriculum Language” documentation that draws
upon the ladder metaphor to illustrate the general structure of BL curricula. IL programs called
segment generators produce sequences of messages from the teacher that form the basis of
instruction. A lesson is a structure that contains one or more segment generators; each lesson
teaches a concept (or rung), which may have several lessons. A curriculum is a sequence of
rungs ordered by a prerequisite relation (a higher rung requires, or makes use of, knowledge
taught at a lower rung).

Curriculum (Ladder) Lessons

Concept (Rung)

Initial
State

Generated Segment

Concept (Rung)
SegmentGenerator

Concept (Rung)

Initial
State

Initial
State

SegmentGenerator

Generated Segment

Generated Segment

Figure 2: Structure of a BLCurriculum

In the early stages of the BL program, the Curriculum Language was, like the Interaction
Language, an IL dialect; segment generators, for example, were executable IL objects that were
executed in an IL virtual machine within the BL framework. The decision to implement the CL
in IL had the drawback of requiring IL expertise, so that only a handful of developers could

16
Approved for public release; distribution unlimited.

actually contribute to the process of curriculum formalization. At the same time, this decision had
the benefit of turning curriculum authoring into an intensive IL proving ground; much of the
work that went into stabilizing and maturing IL was prompted by early curriculum development
efforts, early enough that most IL bugs were discovered internally by the curriculum team, and
not “too late” by the Student Team developers.

As the language matured and IL stabilized, this benefit no longer outweighed the bar to entry in
curriculum development that IL expertise represented. Thus, in Phases 2 and 3, alternative
methods of implementing generators were developed, first in Java, later in Ruby. Both of these
alternatives lowered the qualifications bar and potentially opened up curriculum authoring to
people outside the immediate BL community.

4.1.4 Language Evolution and Implementation
Prior to the start of the BL program, a reference implementation of IL had been developed, to
allow the research program to hit the ground running. When the BL program began, this
implementation, the IL Virtual Machine, was published as part of the BL framework and made
available to all program participants. However, the Student Team developed its own
implementation of the language, to support aspects of the student design, which required that the
various internal learning components communicate with one another in IL. After much
negotiation, the Student Team developed IL 2, a second implementation that met the Student
Team’s requirements while simultaneously allowing the curriculum authors, who had a high level
of facility with the original IL, to continue to write curricula in accordance with original IL
assumptions.

Though IL did not undergo any other major changes after this, it was extended during Phase 3 to
support reactivity. Reactivity began to emerge as an implicit requirement for some of the
curricula under development in Phase 2, such as ISS and the Hidden Domain, where the metaphor
of a “monitoring agent” was used to describe the desired post-learning behavior of the student.
However, IL had not been set up to handle reactivity – the instructional model was that the
student would only do what it had been explicitly told to do via an Imperative message – nor was
its single-threaded implementation designed to handle complex issues such as the concurrency
that reactivity presupposed.

By the end of Phase 3, the language had been extended to simulate a restricted form of reactivity,
via an Anytime construct. An object of the form Anytime(condition=<TRIGGER>,
action=<RESPONSE>) when registered in the VM would enable a sub-routine whereby the
student would check whether the predicate <TRIGGER> evaluated to true each time the world state
updated, and when it did evaluate to true, it would cause the program <RESPONSE> to execute.
To support this kind of reactivity, the BL framework was also extended to provide a world state
server that could reliably maintain a directory of all percepts in the simulated environment at a
given time.

This work on the world state server allowed the curriculum to also support historical state
references when developing Phase 3 curricula. That is, while in the first two phases, the instructor
could only refer to objects in the “current” world state, the ability to access a world state server
allowed the instructor to make, and for the student to understand, references to changes in state, to
facts that had been true in the past but no longer were. This extension played a role in ensuring
that Phase 3 training and evaluation curricula were richer in the space of problems to be solved.

17
Approved for public release; distribution unlimited.

Other changes to IL have been alluded to above, but are worth mentioning here: The
preservation of all IL objects, including invocation records of executed programs, was eliminated
in favor of a more traditional approach of maintaining only the return values. Additionally,
explicit quoting support was also introduced as a valuable way to delay the execution of IL
objects, so that the student could inspect an object (e.g., a teacher’s utterance about the world
state) without evaluating it (and winding up with ‘true’ instead of the utterance itself).

4.1.5 Uses Outside of the BL Framework
As noted above, the Student Team implemented its own version of IL in Java during Phase I for
use as a communication language among learning components. Internally, this involved
extending the IL language to support a First Order Logic (FOL) for describing the structure of IL
objects. For example, given an object of the form Tank(name=tank712,moving=true), the
student would generate an additional object describing this form, using IL predicates to state, for
example, that the value of the moving parameter for tank712 is true. This use of IL played a
large role in the byExample and byFeedback learning algorithms within the MABLE student;
these algorithms would produce defCode declarations that targeted a specific prolog engine, and
would compose a code chunk that drew upon this FOL representation.

4.2 Natural Instruction Methods (NIMs)

Natural Instruction Methods (NIMs) are protocols for interaction between a human or electronic
instructor and an e-student. Within the BL program, these protocols were intended to serve two
functions: First, they defined the “legal” space and ordering of messages that comprise the
instructional input to the e-student over the course of a lesson. In this capacity, NIMs provide a
rigid infrastructure that insulates learning algorithms from exposure to “unfair” or “trick”
interactions, and thus facilitates establishment of a stable development environment for the
learning team and supports a fair evaluation of the learning team’s algorithms. Secondarily,
NIMs have served as models of human-to-human pedagogical interaction. In this capacity, they
were intended to help “drive the science” of BL forward, by introducing challenges that human
students can surmount, but the state of the art in machine learning could not. Though not in
direct conflict, the two roles are in tension, as the more constrained and “stable” the interactive
protocols, the less faithful to natural human interaction the model is. This tension was intended
to be alleviated by modifying NIMs over time, so that once learning algorithms had been proved
robust against a set of initial, admittedly artificial protocols, those protocols could be changed in
piecemeal fashion to accommodate the sorts of problematic features – such as ambiguous or
vague use of language and the omission of “obvious” pieces of information – that are ubiquitous
in human instruction. This transitional process was termed “relaxation,” and was central to
supporting the program’s goal of developing learning algorithms that would be of enduring value
to the instructable computing field.

In this section, we describe the kinds of NIMs that were developed and deployed over the course
of the BL program. We discuss relative successes and failures in the transitional “relaxation”
process, and assess the utility of the corresponding NIMs to the program and to the instructable
computing field. Additional documentation can be found in BAE Systems Technical Report
2766 [9].

18
Approved for public release; distribution unlimited.

4.2.1 NIM Types
As will be discussed, some of the initial assumptions about the nature of NIMs (that they weren’t
specific to learning algorithms) did not survive the early phases of the BL program, somewhat
reducing the overall utility of NIMs as tools for promoting learning algorithm development.

4.2.1.1 Identification of Methods and Specific Knowledge-Types
As formalized protocols, NIMs are best thought of as specifications that fall most generally into
three general categories corresponding to methods of teaching, but within each category,
different NIMs specify variations in the protocol based on the type of knowledge being taught.
The three general NIM categories recognized by the BL program are the following:

 Teaching by examples or demonstration (“by Example” for short)
 Teaching by telling or describing (“by Telling”)
 Teaching by feedback (“by Feedback”)

As the program developed, it was recognized that these general NIM categories apply to several
different types of knowledge:

 Procedural, or “how to” knowledge, of which two subclasses were eventually recognized:
o Procedures that result in perceptual changes in world state (e.g., making a stack of

blocks), and
o Procedures that calculate values for (non-Boolean) functions.

 Knowledge of conditions, of which three relevant types were recognized:
o Truth-conditions (i.e., the semantics of a predicate were taught)
o Execution conditions (i.e., predicate(s) to check whether an if/then/else construct

or while loop should be entered)
o Post-conditions (i.e., how the world changes as a result of executing some

procedure)
 Syntactic knowledge, or knowledge of the definitions that define new classes, where in

the class hierarchy those classes fall, and the parameter/value-typing signatures that
define the well-formedness conditions for their instances

The identification of knowledge types was driven primarily by three factors:

1) Momentum from the BL seedling: Many of the kinds of problems taught in Blocks-World
fell into obvious, natural categories (e.g., predicates, procedures, post-conditions, syntax),
and these were more or less accepted as “good knowledge-types” by program participants

2) The initial design of curricula by domain providers: The curriculum team had domain
providers who supplied simulators, domain expertise, and informal curriculum designs
that were to be codified by other members of the team. As these informal designs
developed, certain kinds of knowledge implicit in the designs became evident.

3) Design decisions by the learning team: The learning team developed an e-student
architecture that assumed the existence of a central control module whose job was to
identify – at the level of individual lessons – which learning algorithm(s) should be
applied. Since, at least initially, each lesson taught one concept (knowledge of some type)
and used one general method, the assumption that individual lessons could be handled
entirely by a single learning algorithm meant that learning algorithms were to be defined
by general method and knowledge-type – i.e., by NIM. This gave learning algorithm
developers – machine learning experts with an interest in specific learning

19
Approved for public release; distribution unlimited.

problems – a genuine stake in what kinds of things were being taught and how, and this
influenced the kinds of knowledge that would be recognized as falling under a formalized
NIM protocol. Thus, for example when “procedural knowledge” was to be taught by
Example, it was important that a distinction be drawn between “procedures with side
effects” and “procedures that calculate values for functions,” because two different
learning-algorithm writers were interested in, and responsible for, these two types of
procedures. This distinction did not need to be explicitly made when teaching by Telling,
however, as a single algorithm-writer was responsible for learning procedures via
Telling.

4.2.1.2 The Development and Refinement of NIM Contracts
Early on in the program, each type of knowledge was associated with 3 separate NIM protocol
formalizations, one for each general method (the sole exception to this was Syntactic knowledge,
which was recognized as only sensibly taught by Telling). These formalizations underwent a
process of generalization, combining protocols into a unified formalization where possible. By
December 2008 (the middle of Phase 1), this process of generalization was complete, and the
specific knowledge-types were officially combined with the general method-types to define eight
sets of NIM protocols, known as NIM Contracts:

o TellingOfProcedure – both types of procedural knowledge, taught by Telling
o ExampleOfProcedure – both types of procedural knowledge, taught by Demonstration
o TellingOfConditions – all three types of condition, taught by Telling
o TruthConditionsByExample – truth conditions, via positive and negative cases
o ExecutionConditionsByExample – if/then/else, while triggers, by positive/negative cases
o EffectsByExample – post-conditions, by positive/negative cases
o byFeedback – all knowledge-types (except Syntax), taught by testing and grading
o TellingOfSyntax – telling of classes and argument-signatures

The NIM contracts were delivered to the learning team, who delivered them to the appropriate
algorithm-writers. In addition to the contracts, a “universal” protocol document that defined
commonalities – the “NIM Common Terms” document – was developed and distributed. The
NIM Common Terms document dealt with protocols that were shared among NIM contracts. For
example, every NIM contract specified that lessons begin with “control utterances” – a pair of
statements from the instructor that identified, first, the type of concept being taught, and then
the general method, so that the e-student would know what NIM protocol applied. For example,
to indicate that the TruthConditionsByExample NIM contract was guiding the current lesson to
teach a predicate named “Foo,” the instructor would produce the following pair of control
utterances:

LessonTeaches(WhenTrue(Foo))
Method(byExample)

In contrast, if the byFeedback contract was guiding the current lesson, which taught Bar, a
procedure (with side effects), the instructor would produce this pair of control utterances:

LessonTeaches(HowTo(Do(Bar)))
Method(byFeedback)

The NIM Common Terms protocol also dealt with other commonalities, such as the use of so-
called “relevance” vocabulary across the byFeedback and the various *byExample NIMs, the

20
Approved for public release; distribution unlimited.

definitions of logical vocabulary (And, Or, etc.), the use of language to specify desired end-states,
etc.

4.2.1.3 Contributions from the Learning Team
Early on, the learning team did not actively attempt to contribute to the formation of NIM
contracts, opting for the most part to study the blocks world curriculum and implement
algorithms that could target those lessons as use cases. Indeed, early on, some members of the
learning team questioned the value of NIM contracts altogether, suggesting that progress would
be obtained more rapidly if the development of training curricula were accelerated relative to
development of formalized protocols. But as diversity domain curricula began to emerge, and
the blocks-world use cases became insufficient to predict the space of interactions included in the
new curricula, the need to attend to and help shape the details of the NIM contracts became clearer
to the learning team, which took two courses of action in response. One was to produce a
document on “learnability,” in which each learning algorithm writer enumerated the general
features required by any lesson teaching a concept falling within that algorithm’s bailiwick. The
second was to engage with the curriculum team directly, identifying particular problematic
examples from the diversity domain and extrapolating from those examples what sorts of
changes needed to be made, either to the NIM protocol or to the learning algorithm. Working
with the learning algorithm writers individually, several changes in NIM contracts were
introduced, some in the area of additional vocabulary to facilitate expressiveness and reduce
ambiguity, others in the area of restrictions that would increase clarity. One of the most notable
improvements came from discussions that began during the learning team-hosted “hackathons,”
where extensions to the then-generic “relevance” language were developed. (Up to that point,
there had been a single predicate, Relevant(X) which meant that the object X was somehow
relevant to what was being taught, with no indication about how or why the object was relevant).
Other contributions were more restrictive, such as eliminating multiple ways to say the same
thing, and eliminating ambiguity. Most of these restrictions attained the status of relaxation
trajectories, or planned “loosenings” of the now stricter protocols, that could be used later in the
program.

4.2.1.4 Syntax and Noticing
Of the eight formal NIM contracts used in Phase I of the BL program, seven continued to be used
throughout the remainder of the program. No additional contracts were added. The
TellingOfSyntax NIM contract was eliminated at the end of Phase I, and replaced by the learning
strategy of Noticing that new terms had been introduced in the course of a lesson, and deriving
the IL definitions by observing how the terms were used. This added a new dimension of
realism to the diversity domain curricula, as it allowed an entirely new concept to be introduced
and its semantics taught in the course of a lesson.

4.2.2 Assessing the NIMs

4.2.2.1 Phase I & II NIM Assessment
It is fair to say that the NIM contracts of Phase I – and thus the diversity domain and Phase II
Hidden Domain lessons that implemented them – successfully filled their role as formalized
protocols to guide interactions and ensure that concepts were learnable by the e-student. The e-
student passed the pre-Hidden Domain acceptance test during Phase II on the diversity domain
lessons, each of which instantiated a NIM contract, and the breadth of which exercised the
breadth of “instructional space” allotted by the relevant NIM fairly well. Additionally, the e-

21
Approved for public release; distribution unlimited.

student passed the Phase II Hidden Domain curriculum, which established that the NIM
protocols and the learning algorithms were robust when presented with a novel domain.

At the same time, however, the initial versions of the NIM protocols were highly restrictive by
design, and so were fairly artificial, limiting their ability to serve as accurate models of human
instruction. Somewhat unfortunately, the NIM contracts – influenced by largely restrictive
contributions from the learning team that came relatively late in the first phase of the program
(only after diversity domain lessons became available) – arguably took a step backward from
their role as models of human instruction, becoming more artificial than what had been initially
proposed. Areas of artificiality thus introduced included:

 An increased level of “relevance” annotation of examples (providing more information
than humans would plausibly provide) that caused most “by Example” and “by
Feedback” learning to approximate the “by Telling” interaction protocol.

 A need to explicitly introduce, as arguments to a predicate, any domain object used in
calculating its truth value. (e.g., instead of defining “siblings(x,y)” as “given x,y, and z,
siblings(x,y) holds if parent(x,z) and parent(y,z)”, the restriction was introduced that
siblings be defined as ternary, with an argument place for the parent.)

 The elimination of disjunctive truth conditions as possible learning targets.
 A reliance on explicit statements of “what to do next” while demonstrating a procedure,

e.g., that a procedure contains a loop or an if/then/else construct.

4.2.2.2 NIM Relaxation and Phase III
After Phase II, the curriculum team took measures to introduce a space of learning challenges and
relaxation trajectories to reduce NIM artificiality and move towards more realistic modeling of
human instruction. In March 2010, the curriculum team distributed a document to the learning
team defining a fairly rich space of such challenges and relaxations that would improve
instruction naturalness. The learning team was able to implement some of these new NIM types;
fortunately, some of the most troubling artificialities “made the list,” and much of Phase III was
spent implementing these relaxations in the diversity and Hidden Domains. For example, all of
the bulleted items, listed above as matters of concern with respect to artificiality, except for
“disjunctive truth conditions” were implemented in Phase III and used by the algorithm writers
to allow their learning algorithms to function with less artificial NIM protocols.

By the end of the Phase, the e-student was able to reach performance on the “relaxed” diversity
domains comparable to that in Phase II, and it succeeded in passing the “relaxed” Hidden Domain.
Though some artificialities remain, the fact that the student was able to learn with several artificial
“crutches” removed, and with only a short time for additional preparation by the learning team is
highly promising.

4.2.3 Conclusions
Natural Instruction Methods were an integral part of the BL program, serving both as protocols to
ensure compliance of instructional materials with the expectations of the learning team and with
the requirements of fair testing, and as models of human modes of pedagogical interaction. While
highly successful in this first role, the NIM protocols developed for the BL program were only
able to begin to live up to their second – arguably more important – role in the final phase of the
program. Nevertheless, the fact that the e-student was able to pass the final evaluation, a “hidden
domain” curriculum that embodied several NIM relaxations, including the removal of

22
Approved for public release; distribution unlimited.

excessive “what to do next” hints during demonstrations and the use of vague or ambiguous
“relevance” statements, as well as multiple learning challenges, indicates that the basic approach
of specifying instructional protocols in the form of NIMs has value, and can be built upon in
future work on instructable computing.

4.3 BL Automatic Teacher and Framework

The e-student is taught and tested via a machine readable curriculum definition (described in a
previous section). Curricula have been encoded for each of the testing domains (described in the
following sections). The curriculum is transmitted via the automated teacher to the student in a
manner that obeys the natural instruction methods. While a human teacher might also provide
this curriculum-based instruction, in this project, the automated teacher has the role as an
electronic proxy for the human instructor who writes the curriculum. While the ultimate goal of
the BL program is to allow humans to instruct the automated learners, the automated teacher and
curriculum combination is vital to executing repeatable and automated tests of the e-student.
These testing cycles are crucial to both the development of the learning capabilities (not
surprisingly the student algorithms do not learn everything required upon first release) and to the
assessment of the learners’ accomplishments.

The teacher operates using the services of the BL framework. The BL Messaging Framework is
a Java-based platform for conducting machine learning experiments. The heart of the framework
is the Channel Server, an object which acts as a message bus and coordinates the initialization of
the system. The Channel Server allows for the passing of Channel Messages on a variety of
named Channels. Channels record and deliver Channel Messages to various subscribers.
Channel Listeners are objects that subscribe to various named channels in order to receive
Channel Messages. Agents are objects that, after registering with the Channel Server, are allowed
to post as well as receive Channel Messages. In order to abstract Agents from implementation
details of the underlying message bus, Agents use a Channel Message Factory to create Channel
Messages for posting to the framework.

The framework has been designed so that components may be initialized and started
independently from other components in the system. The first component to begin operation
must be the Channel Server. The Channel Server starts a Framework Agent, which represents
the framework when passing messages on named channels. The Framework Agent posts
framework properties, announces agent registrations, and transmits curriculum files to agents.
After the Channel Server is running, Agents and Listeners may connect to the framework at any
time. Channel Listeners connect to the system by subscribing to a named channel. Agents
connect to the system by registering themselves. The Channel Server remains running regardless
of Agent activity. On the event that the Channel Server should shut down, it will send a shutdown
message to all agents in the system.

A crucial aspect of the framework is the timeline. It can be thought of as the communication
backbone for the BL framework and constituent components (i.e., Student, Teacher, and World).
The timeline provides:

1) Agent ITL messaging: Agents must have an interface to post messages to other agents
and to receive messages from other agents.

23
Approved for public release; distribution unlimited.

2) Historical access to the ITL messaging sequence: Agents must have a way to access
previous messages on their timeline (a sequential accessor, e.g., getNth would provide the
required access).

3) Access to the changing world model: At any particular point on the timeline there is an
associated percept state of the World. An agent should be able to retrieve the percepts
state of the world as of a particular time (as denoted by a particular message number in
the timeline).

4) A messaging/addressing/interoperability backbone: The messaging framework is the
primary interoperability mechanism that joins all the agents together. The timeline
implementation should be pluggable to support alternate interoperability mechanisms.
(This not so much an API requirement as a design/implementation constraint.)

5) The timeline supports flexible addressing of messages to multiple agents. Initially we
have 3 addressable agents: Student, Teacher, and World. In the long run we may need to
address multiple teachers and multiple students.

6) Agent coordination backbone. The timeline will also host agent coordination messages
such as StudentDone and TeacherDone. The current supported instructional protocol
involves a handshaking between Teacher and Student. The current protocol assumes a
turn taking interaction between the agents. This turn taking does not provide for one
agent interrupting another. A future requirement is for the teacher to be able to
“interrupt” the student and tell the student they are done (“pencils down” – so to speak).
Supporting an interruptible agent messaging protocol implies a corresponding
requirement on the agents, i.e., to be able to gracefully handle an interrupt and
presumably to be able to produce partial results at the point of interruption.

The framework provides programmatic coordination of the agents in the BL system. The
framework provides:

1) A general mechanism for setting and communicating execution input parameters. There
are mechanisms for setting general framework parameters and individual agent
parameters. This parameter mechanism is generalized in the sense there is not a specific
a priori set of parameters. There is a dynamic capability to register and lookup parameter
names.

Example parameters include: How many knowledge injections can the student take? How
much clock time is the student allowed? (Note that multiple agents will need to be able to
handle these parameters. For example, does the student have the property that it can return
partial results after a fixed amount of time? If not, the clock time parameter will
potentially result in the student not being able to produce any result in the allotted time.)
As parameters are defined, the required processing of that parameter by each agent must be
considered.

2) A general mechanism to capture agent component output data. The parameter mechanism
serves as both input and output mechanism. Certain results of a learning session are
returned in output parameters. This helps support programmatic invocation of learning
sessions (a la UNIX pipes).

3) The APIs for running a set of agents through a curriculum. The framework provides a set
of APIs for marshaling the required set of agents (Student, Teacher, and World) and
running a curriculum through them. The base curriculum to be run may be customized or

24
Approved for public release; distribution unlimited.

modified dynamically. A mechanism of “Curriculum Deltas” provides this functionality.

A curriculum delta is a specification that can be applied to an existing curriculum to
dynamically define a derived curriculum. The delta may, e.g., override properties
defined in the curriculum IL files.

4) The APIs for programmatically executing an individual lesson. An API is provided for
running a single lesson (this might be achievable via a curriculum delta) to support the
assumed common testing case of scripting a sequence of lesson invocations
programmatically. The API for running a single lesson exposes hooks for the basic steps
of running a lesson – including at a minimum before and after lesson run hooks

The automated teacher makes use of the framework to interact with the e-student. Curriculum
segment materials are combined by the electronic teacher to create a segment generator for the
lesson. The electronic teacher uses these materials to create an initial state for the domain
simulator, adds messages to the timeline for the instruction, observes the student’s additions to the
timeline, provides feedback and evaluation when appropriate in the lesson, and answers student
questions. Our baseline electronic teacher, a simple scripting language with rule support,
interprets the curriculum to generate interactions with the e-student that are recorded on the
timeline. For example, in a teaching-by-demonstration example, the teacher first adds
scaffolding utterances and task information to the timeline. It then issues imperative utterances
that when evaluated cause actions to be taken in the simulator which in turn cause a response
consisting of percepts that are added to the timeline. During this interaction, the Teacher monitors
the interpreter’s execution and inserts utterances at appropriate points as directed by the
curriculum materials. Context-specific questions, teaching-by-feedback, and evaluation rules
can be handled similarly.

4.4 Diversity Domains (and Simulators)

Diversity domain curricula, or “diversity domains” for short, are electronic curricula used as
development environments for learning algorithm development. Each diversity domain requires
interaction with a domain-specific simulator, and is comprised of rungs that are intended to
challenge the e-student on a variety of learning problems, each salient for that domain. Domains
are topically heterogeneous – a gate against over-fitting of learning algorithms against a small
space of problems. The problems instantiated in the diversity domain curricula were determined
by a multi-phase process, involving members of both the curriculum and learning teams. The
ultimate determination of learning challenges was but one step in the overall domain development
process:

 Informal Design and Simulator Development. First, a domain provider produces an
informal description of a domain, or topic (e.g., problems in UAV control), and proposes a
number of specific concepts to teach in that domain. The domain provider also provides a
simulator and an API for executing commands in that simulator.

 Simulator Integration and Initial Formalization. Other members of the curriculum team
were responsible for integrating the simulator into the BL framework, which involved
defining a “percept model” for generating ITL perception messages suitable for
consumption by the student and teacher, and for codifying the concepts informally
specified by the domain provider. Curriculum formalization occurred within the
formalization guidelines set forth in the NIM contracts, and was constrained by the

25
Approved for public release; distribution unlimited.

practical expressive limitations of the IL language. As domain providers, in general, were
neither familiar with the finer-grained details of the NIM protocols, nor with the practical
limitations of the Interlingua language, this meant that the codification process often
involved some iteration between domain providers and curriculum implementers, so that
the original intent behind the curriculum was not lost or skewed as a result of
formalization. Because curricula were designed in a modular fashion (that is, concepts
and lessons could be added or removed without negatively impacting the ability to execute
a curriculum), curricula could be “rolled out” to the learning team in piecemeal fashion.
That is, once a lesson from the formalized curriculum was able to pass unit (JUnit) tests
that ensured both the syntactic correctness of the lesson and the correctness of the
“injected knowledge” (the instructor’s formalized model of the concept, or target
capability, being taught by a lesson), the lesson was made available to the learning team.
This sort of “roll out” allowed for a third, final stage in the curriculum development
process.

 Iterative Refinement. A diversity domain curriculum was not “set in stone” until the
learning team was able to do some initial experimentation, which often revealed a number
of issues. Issues ranged from purely “curriculum-side” problems, such as code- level
bugs that were not “catchable” by the injected student (for example, the teacher might
label an example incorrectly) in JUnit testing; to inter-team interpretative issues about
what the NIM protocols licensed or did not license; to “student-side” issues, such as
limitations on what kinds of challenges were “fair” (regardless of what NIMs did or did
not license, or the revelation that extra-NIM restrictions must be imposed for certain
learning algorithms to gain traction).

This process produced four diversity domain curricula, plus an ever-evolving Blocks World
curriculum, that the learning team was able to use in experimentation and algorithm
development. As algorithms matured, diversity domain curricula were modified to make
existing learning challenges more difficult (the NIM “relaxation” process), or to add new
learning challenges. In fact, one of the diversity domain curricula – the ISS2 curriculum of
Phase 3 – was written entirely for the purpose of handling new learning challenges, something
that its simulator was uniquely suited among diversity domain simulators to support.

In what follows, we describe each of the diversity domains (and Blocks World), to give the reader
a sense of the kinds of learning problems to which the e-student was exposed. A much more
detailed description of each diversity domain curriculum appears in the documentation associated
with each curriculum [10]; the reader is specifically directed to the curriculum design document,
simulator design document, and phase-specific editions of the curriculum manual for each
diversity domain curriculum.

4.4.1 Blocks World
The Blocks World “starter” curriculum continued to evolve with the BL program, and was used
to introduce new problems during each program phase. As its name implies, the curriculum
involved the ability to use a claw to manipulate a set of blocks (located on a table) to create
designated block configurations, e.g., a stack. However, the Blocks World curriculum was central
to the program during Phase 1, when a subset of its problems formed the basis of the Phase 1
evaluation. The e-student had to learn three target concepts from Blocks World, using three
different NIM protocols, so as to establish the feasibility of their approach to learning.

26
Approved for public release; distribution unlimited.

In Phase 2, Blocks World was updated to use a new simulator that supported differently-sized
blocks as well as absolute (x,y) coordinate locations; the original simulator only supported
relative locations, e.g., “on a block” or “on the table.” The new simulator allowed for a range of
more complex procedures to be taught, such as making a doorway or a T-shaped block structure.

Blocks World also proved useful in Phase 3, as it was extended to help the student learn how to
handle new learning challenges.

4.4.2 Unmanned Aerial Vehicle (UAV)
The UAV domain was the first curriculum introduced into the BL program after Blocks World.
The initial curriculum design and simulator were provided by Sarnoff, Inc. The domain focused
on UAV control, and its concepts were separated into three Units:

 Unit 1 taught concepts central to operating the UAV, such as checking fuel levels prior to
takeoff, flying from one waypoint to another, raising and lowering the landing gear, etc.

 Unit 2 taught concepts central to operating the UAV camera.
 Unit 35 taught concepts central to recognizing (simple) scenarios on the ground, ranging

from recognizing low-level features such as relative distance (e.g., “near”) to more abstract
features such as the conditions under which truck movement might be considered
suspicious.

The difficulty of the concepts in the UAV domain ranged from straightforward (e.g., teaching a
procedure as a linear sequence of steps) to highly difficult (e.g., ambiguous examples) and so
helped focus the program on a “sweet spot” in Phase 2, in terms of what sorts of problems were
reasonable for the e-student to handle. Some kinds of lessons – for example, those that explicitly
taught syntax (class-hierarchy location, parameters, and type-constraints on parameters) – were
eventually dropped as “too easy,” while others – for example, those that used examples to teach
cause-effect relationships when multiple simulator actions could cause the same effect – were
dropped as “too hard.”

The UAV curriculum initial design and simulator were provided by Sarnoff, Inc.

4.4.3 Armored Task Force (ATF)
The ATF domain curriculum and simulator were provided by Teknowledge. The curriculum was
initially designed to teach concepts about force movement. Because of the similarities between
force movement and control in the UAV domain, the program manager requested a change in
focus, and the ATF curriculum was redesigned to focus on planning. The over-arching task of
the redesigned curriculum was to teach the student an algorithm for “grading” a planned traversal
by a company over an area with several different terrain features, based on the time it would take
for a company to follow the route segments that comprised the overall path. Factors affecting time
included not only the length of the route segments, but the terrain quality for each segment, the
capacity of the company to handle certain kinds of terrain (specifically, mine fields, which could
be crossed if the company was equipped with a mine plow), and how frequently the company was
required to change formation. As an additional learning challenge, the plans did not explicitly
specify formations, so the curriculum also taught a procedure for filling in this information, which
the student had to supply in order to grade a planned traversal correctly.

5 What we call “Unit 3” here is actually referred to in the UAV Curriculum Manuals and Design Document as “Unit
4” – the “original” Unit 3 was unimplemented, so that Unit 4 is the third of three implemented UAV units.

27
Approved for public release; distribution unlimited.

The ATF curriculum units included:

 Unit 1 taught the syntax for the SetVelocity function, a concept from the original ATF
design that had been implemented prior to the redesign.

 Unit 2 taught the CompanyHasMinePlow predicate. Like the SetVelocity function, this
concept originated from the original design; however, this predicate was used later in the
curriculum to help assess the time it would take to cross terrain that contained mines.

 Unit 3 taught all of the concepts that emerged in the redesign – all of the predicates,
functions, and procedures needed to grade a plan for company traversal.

4.4.4 International Space Station (ISS) (Version I)
The ISS domain and simulator were provided by the AI research division of Stottler Henke [11].
The general theme of this curriculum was diagnosis. The e-student was placed in a simulated
environment where it would receive alerts, and the instructor would teach it the significance of
those alerts, a method for generating hypotheses about what problems those alerts might signify,
and a procedure for ranking the hypotheses in terms of what should be “explored” first. The
central metaphor used in the curriculum was a “whiteboard” – an artifact both shared and
independently modifiable by the teacher and the student – that was used to maintain an evolving
model of the space of hypotheses as to what might be wrong with the space station. Diagnosis in
this curriculum thus consisted of modifying the whiteboard in a way that allowed hypotheses to be
expanded, and priorities set to make the expansion sensible. The difficulty level for learning this
diagnostic procedure was deemed sufficiently high that the teaching of repair methods was
deferred for later phases (see following section on ISS version II). In its formalized, deployed
form, the curriculum consisted of eighteen concepts across two units:

 Unit 1 taught the notion of an abnormality, and the various conditions under which a
notification from the ISS system might indicate an abnormality. Here, too, the notion of
a whiteboard was used, and the student was taught how to register abnormalities on the
whiteboard.

 Unit 26 taught the various functions and procedures needed to navigate and modify the
diagnostic hypothesis space via the shared whiteboard. This involved teaching the
student how to “reason backwards” from a hypothesized event that could explain an
abnormality to the various types of events that could cause that event, as well as how to
“look ahead” to possible longer-term effects (such as mission failure or loss of the space
station) if the ultimate cause (revealed by the reasoning-backwards process) were to go
unaddressed.

This curriculum was highly ambitious from both an instructional and software engineering point
of view. The hypothesis space, modeled via the whiteboard object, was capable of growing to a
size that made updates to it non-trivial in terms of memory management in the IL virtual machine.
Moreover, the procedures for analyzing the hypothesis space were difficult to describe in a
“natural” fashion, as they required a precise understanding of the formal structure of the

6 Again, there is a numbering issue with this curriculum. As originally designed, the ISS curriculum consisted of a
large number of concepts to be taught in eight units. Due to the complexities involved and limitations with the ISS
simulator, only two units were implemented.

28
Approved for public release; distribution unlimited.

whiteboard, its constituent hypotheses, and the relationships among hypotheses. As a result,
learning algorithm writers had trouble understanding the general nature of the learning problem,
making learning algorithm debugging hard.

A major source of the complexity was that the ISS simulator was unable to support the
whiteboard model, which ultimately had to be represented in InterLingua as a modifiable object
that could be passed back and forth. A conscious decision for Phase 3 was to update the ISS
domain with a new, more robust simulator, and to focus the domain away from the whiteboard
metaphor, and towards a simpler model of diagnosis and repair. The result was version II of the
ISS domain, which was developed as a completely distinct curriculum from ISS I.

4.4.5 International Space Station (version II) (ISS-II)
The ISS II domain and simulator were also provided by Stottler Henke Associates. The
curriculum featured seventeen concepts across 3 Units:

 Unit 1 taught concepts central to alert-monitoring, such as the notion that an indicator has
changed status, or that a new, unacknowledged alert has appeared.

 Unit 2 consisted to two independent rungs, developed prior to the finalization of the ISS
II design, that taught the student to recognize that changes to an indicator status mean that
a control flow valve needs to be adjusted, and a procedure for identifying which valve(s)
needs to be adjusted.

 Unit 3 taught diagnostic predicate/repair procedure pairs needed to respond effectively to
the indicator status change events introduced in Unit 1.

Version II of ISS was significant not only because it fulfilled the early promise of ISS I by
combining diagnosis with repair, but also because it supported two Phase 3-specific learning
challenges: reactivity (i.e., learning to react in response to stimuli from the simulated
environment), and reasoning about change over time. Until Phase 3, the IL language was
restricted in its ability to handle these kinds of challenges, and the introduction of the new ISS
simulator provided the program with an opportunity to explore them. Indeed, the Phase 3
Hidden Domain curriculum was designed so as to contain these challenges, and of the diversity
domain simulators, only the ISS II simulator was in a position to support them.

4.5 Hidden Domain (and Simulators)

A common problem with learning research and technology is overfitting of learned results to
training and test data. For this reason it was considered highly desirable to show that the
learning capabilities claimed by the learning teams were demonstrable in at least one problem
domain of which the teams themselves had no prior knowledge: the so-called hidden domain
(henceforth, the HD) of BL evaluation.

Whether or not a certain representational capability is exhibited by a finite convergent learning
behavior is a function of the dispositional state to which the learning system converges as the
result of training: which amounts to saying that the test of whether a system has learned to satisfy
one condition O if another condition I holds is whether the system will produce O in any
situation where I is satisfied. The practical problem of establishing this general result on the basis
of a finite number of test cases faces the challenge that, for any finite test set, the logical
possibility exists that the learner has in fact learned a condition other than I that happens to be
common to all of the tests. One way of obtaining defensible assurance of generality is to provide

29
Approved for public release; distribution unlimited.

the learning system with test cases which the system designers could not have anticipated and
where the input condition holds, the persistence of convergence under unanticipated conditions
serving as a strong indicator that adaptation is not overfitted to the training domains.

4.5.1 Development Process
As was the case with the diversity domains, the hidden domain supported an electronic
development environment for algorithm learning, and as with the diversity domains, this
environment presupposed interaction with a domain-specific simulator governed by a curriculum
specification comprised of concept-specific rungs. Multiple lessons distinguished by natural
instruction method or NIM were targeted to each rung. The natural instruction methods used were
identical in format to those employed by the diversity domains and were agreed on by a consensus
process between learning and evaluation teams, resulting in formally specified NIM contracts.
The domain choice, informal domain design, electronic domain simulator, and Application
Program Interface (API) were produced by the domain provider (Stottler Henke Associates) in
consultation with the curriculum provider (Cycorp). The curriculum, consisting of formally
specified electronic lessons teaching a partial order of concept rungs, was designed and
implemented by Cycorp personnel.

4.5.2 Content and Curriculum
The operational learning environment selected for the HD concerned misconfigurations and
component failures in satellite ground station equipment [12, 13], with training scenarios
originating with actual experiences with ground stations for scientific satellites provided by a
Stottler Henke Associates subject matter expert, Dr. Manfred Bester. The original HD
curriculum consisted of five units and 23 rungs. Unit 1 was comprised of two rungs: how to
identify abnormal indicators for a satellite tracking pass, and how to list components showing
abnormal indicators. Unit 2 concerned the classes of equipment malfunction which were
sufficient conditions for a component showing abnormal indicators. There were six such classes,
corresponding to six IL predicates, with a single predicate taught in each unit rung. Unit 3
concerned repair procedures for each of the taught fault conditions: there were six such repairs
(corresponding to the six failure modes of Unit 2), and six Unit 3 rungs, with one rung
corresponding to each repair procedure. Unit 4 taught conditionalizations linking failure modes
and repairs: i.e., that each failure mode was in turn a sufficient condition for carrying out the
corresponding repair procedure. Finally, Unit 5 taught a global diagnostic regimen for monitoring
for abnormalities and applying repair procedures as needed, that would serve in all of the Stottler
Henke fault scenarios. It consisted of three rungs. First, a repair procedure was taught that
sequentially tried fixes on uninitialized, misconfigured, and inappropriately offline components,
followed by fixes of intrack error, elevation error, and azimuth error, if the component on which
the fix was being attempted was the tracking antenna. Second a secondary repair procedure was
taught that took a list of components as input and, for each component element in the list, found
the immediate predecessor in the tracking station dependency graph
and executed the previously taught Unit 5, rung 1 repair procedure on that predecessor. Finally,
a comprehensive diagnose-and-repair script was taught, that began with an assemblage of a list
of all abnormal components, followed by an execution of the basic repair procedure on every
element of the list, followed by regeneration of the list of abnormal components, followed by
execution of the secondary repair procedure on the elements of the secondary list.

30
Approved for public release; distribution unlimited.

This was the extent of the Phase 2 curriculum. Its seemingly over-determined character was in
fact necessitated by the initial semantic limits of IL; in particular, there was no provision in the
language or the curriculum framework for a student to take any action not explicitly prescribed
by the teacher, which made it impossible for a student to act in any way that had not been taught
to it as a named procedure, thereby ruling out ‘emergent’ behaviors that came about as a result of
monitoring for salient conditions. In Phase 3, IL semantics were extended in ways that allowed
for precisely this functionality, and the HD curriculum was broadened in order to take account of
the new capabilities. A new unit, Unit 3A, of six rungs was added wherein the student was
taught success criteria for the six repair procedures taught in Unit 3, and the diagnose-and-repair
procedure of Unit 5 was refined so that success criteria could be used to gate additional repairs in
a way that reduced performance of redundant or unnecessary repair procedures. Also, another
new unit, Unit 6, was added to teach trigger conditions for the diagnose-and-repair procedure. It
consisted in five rungs: the first taught truth conditions for when the satellite tracking task
schedule had changed; the second and third taught predicates for monitoring alert indicators that,
if learned, jointly enabled the student to conclude that a readout was alerting as abnormal; the
fourth related these predicates to trigger conditions for initiating the diagnose and repair
procedure, and the fifth taught a reactive procedure for applying the modified diagnose-and- repair
procedure of the new Unit 5, relative to these trigger conditions.

4.5.3 Phase 3 NIM Relaxation Trajectories
In addition to introducing elements that implemented novel learning challenges, the Phase 3
curriculum also modified lessons via strategic ablations of NIM protocols. Referred to as
Relaxation Trajectories (RTs), several were implemented for the HD in Phase 3, notably removal
of concept-identifying control utterances, removal of argument-signature-revealing utterances,
removal of explicit telling of sufficient conditions when teaching if/then/else clauses, and
generalization of utterances stating relevant conditions.

4.5.4 Hidden Domain – Diversity Domains Comparison
A natural concern in testing system performance scaling is whether the scaling test or tests
actually belong in the operational range of the functionality being tested. Thus, it was deemed
important to show that the HD curriculum was in balance no harder than the diversity domain
(DD) curricula, and that the totality of the learning tasks of the diversity domains was such that a
student that performed adequately on all of them could be expected to deliver a comparable
performance on the HD. For this reason, a detailed comparison of the HD and DD curriculum
frameworks was undertaken. The conclusion was that the coding syntax of the HD framework
was at least no more complex than the syntax of the most complex DD curriculum lessons, and
that the induction task required in each HD lesson was homomorphic with respect to some
induction task in the diversity domains, when the propositional inputs and desired outcomes of the
tasks were rendered in the IL ontology.

4.6 BL-ISR

In Phase 3, we applied BL methodologies to the ISR domain. This domain provides a good testing
ground for BL techniques for a number of reasons. Making the most effective use of ISR data
requires that it be combined with information of diverse sorts – background information on
patterns of life, geospatial entity data, human intelligence (HUMINT), signal intelligence
(SIGINT), etc. In addition, analysts discover relevant patterns in the field, making it difficult if

31
Approved for public release; distribution unlimited.

not impossible to pre-program automated search for such patterns. There is therefore a strong
need for a system that allows the analysts themselves to teach an automated fusion system new
patterns and rules. The tools developed in BL provide a natural means for accomplishing this
sort of instruction. The following subsections describe sample scenarios involving the analysis
of ISR data, the representation of such scenarios in our system, and the instructional interface we
developed for teaching analytic rules and procedures for such scenarios.

4.6.1 ISR Analysis Background
ISR activities involve the collection of data in support of military or national security objectives.
Data are collected through sensors on satellites, manned and unmanned aerial vehicles, or
ground-based sensors. The data collected comes in a variety of forms, including optical, radar,
electronic signals, and infra-red. For our purposes, a type of radar data known as GMTI data is
important. This data is generated by a radar system that detects targets moving on the ground
(e.g. vehicles).

This data can be used for a variety of purposes. To be useful, the individual detections need to
be stitched together to form tracks, temporally ordered sequences of detections inferred to be
from the same target. Track data can be enriched with additional layers of information such as:

 Road networks
 Locations of interest (e.g. houses, factories)
 Communication events (e.g. cell phone calls)
 Threat events (e.g. Improvised Explosive Device (IED) explosions)
 Pattern of life analysis
 HUMINT

Data that has been processed and enriched in this way is now at the symbolic level, not the pixel
level, and BL techniques can be applied to data at this symbolic level to solve learning problems
of interest to analysts. The additional, non-track, sources of information supply a context for
interpreting track data. For example, a pattern of life analysis tells the analyst what activities in a
region are normal – e.g. patterns of traffic to and from a workplace or a mosque, times at which
farmers plow their fields, transport of livestock across a border, and so on. Patterns that deviate
from the normal patterns of activity will be of interest to analysts and merit further investigation.
Similarly, the recent occurrence of certain events such as IED explosions will heighten interest in
track patterns that might be interpreted as indicators of an impending event (e.g. locals avoiding
routes that normally have a lot of traffic).

4.6.2 ISR Scenarios
We investigated a number of scenarios of interest to ISR analysts. Given our available ISR
simulation data, we were able to represent three scenarios of interest:

 Suspicious Meeting
o Multiple tracks converge on a remote location that rarely sees traffic
o Tracks arrive at location close in time to one another
o One of the tracks starts near a known safe house

 Clandestine Theft Scenario
o Track ends in deserted location at unusual time (3 AM)
o Location is near facility storing materials usable by insurgents

32
Approved for public release; distribution unlimited.

 Impending event (social knowledge)
o Area with normally heavy traffic during a certain time of day (e.g. morning rush

hour) has significantly decreased traffic
o Knowledge of an impending event (e.g. an IED explosion) may have spread

through the local populace

For the first two scenarios, we developed instructional scripts for teaching the concepts involved
in those scenarios. The instructional sequences for the suspicious meeting and clandestine theft
scenarios are described in detail in ISR Jr User’s Manual [14].

4.6.3 System Architecture

GMTI Images

ISR teaching
environment

Intel
analysts

Intel reports

Tracking/
fusion
system

Student

Bootstrapped Learning
Framework

Cue

sensors

Videos Warfighters

Figure 3: The BL-ISR Architecture

Figure 3 shows a high level view of the BL ISR architecture. The patterns of interest are taught
to the student by an analyst, with the BL Framework being used as a messaging and integration
system for the student and teaching components. Data from multiple heterogeneous sources is
fed into a tracking/fusion system that produces higher-level representations in symbolic form
used by the e-student in inferring instances of the learned patterns. The analyst will also teach
priorities for different patterns and depending on the priorities of inferred pattern instances, the
e-student will issue requests to cue sensors for additional information or will issue alerts to
interested parties.

33
Approved for public release; distribution unlimited.

4.6.4 Analysis and Instruction Stages

Moving Target
Indicator (MTI)
inputs

Determine general
type of event

Classify
anomaly

Determine how suspicious
or threatening event is

Screen
report

Assign priority
(optional)

Process
notice

Teach

classification
rules

Teach
suspiciousness

concept

Teach
priority

concepts

Figure 4: The Three Stages in BL-ISR Analysis and Instruction

We broke the analysis process up into three stages, with corresponding types of instruction for
each stage. We assume analysis starts with the detection of some anomaly (or more generally,
some pattern of behavior that the analyst believes merits further attention). The first stage of
analysis is to classify the anomaly – to determine what kind of event is happening. It might be a
number of vehicles converging on a particular location or a vehicle stopped in a location that is
normally deserted. After classifying the anomaly, the next analytic task is to determine whether
there is cause for concern – is the event an indicator of a worrying problem or issue – is
something suspicious happening that may pose a threat? Finally, the analyst must prioritize the
alerts in order of their importance. In the BL ISR effort, we investigated different techniques for
performing the first and second of these analysis tasks – classifying and determining
suspiciousness.

4.6.5 Instruction Techniques
A number of instruction techniques were explored to support BL-ISR. These include:

 Natural language instruction: giving a rule in natural language, with feedback about the
correctness of the generated formalization. This is a version of Learning by Telling.

 Learning by Example: apply Inductive Logic Programming to learn from a set of labeled
examples. There is a continuum of teaching techniques between Learning by Telling and
(pure) Learning by Example since Learning by Example allows the instructor to suggest
starting rules. The starting rule could be a trivial one (“Classify every track convergence
as suspicious”) that gets refined by examples; or the starting rule could be close to the
final, correct rule, in which case a much smaller set of examples is needed to refine the
rule.

 Templated Learning of Procedures: This allows the instructor to select, specialize, and
combine procedures from a library of procedure templates.

 Learning of Utility Functions: In this form of learning, patterns of behavior, such as
vehicular movement inferred from GMTI data, are explained in terms of utilities of
agents (agents prefer this route to get from A to B over this other route). Given the

34
Approved for public release; distribution unlimited.

learned utility functions, anomalies are detected when they cannot be explained by the
utility functions (this agent is taking a route from A to B not predicted by the utility
functions for paths).

An overarching theme of all these instruction techniques within the BL ISR framework is that
they are all situated. The meaning of situated instruction is spelled out in the next section.

4.6.6 Situated Instruction
A common way of extracting knowledge from experts is by using knowledge engineers as
intermediaries to translate subject matter experts’ knowledge into a formalism usable by
machines. There are many pitfalls in this approach: Subject Matter Experts (SMEs) have
difficulty articulating their knowledge in a format that knowledge engineers can grasp, key
assumptions obvious to the experts may not be made explicit, and the models/representations
created by the knowledge engineers are difficult for the SMEs to evaluate. Another problem is
that the patterns that need to be represented might change over time or vary from place to place,
so that the knowledge that needs to be represented is highly localized and not easily captured
outside of the specific context in which it is applied. For these reasons, much research on
knowledge acquisition has focused in the last decade on making it easier for the SMEs
themselves to enter knowledge into an inference system. This has taken the form of interfaces
for natural language, or structured natural language; various types of graph-based or
diagrammatic representations; form-based interfaces; and libraries of knowledge components.
These techniques have improved the knowledge acquisition task to some degree, but they have
limitations, such as:

 Diagrammatic representations can quickly become unwieldy and tedious to construct
 Natural language interfaces can be helpful but are often not sufficient on their own
 Controlled natural language interfaces present some of the same problems as formal

representations (user does not understand intended syntax or semantics, or makes
incorrect assumptions about them)

A more basic problem with these approaches is that SMEs knowledge often cannot be easily
articulated. Research on the learning of cognitive skills has shown that “as someone becomes an
expert, knowledge often becomes encoded as perceptual-motor skills rather than rules and
therefore less accessible to conscious formulation” [15]. Quite frequently, the problem is not the
lack of a suitable representation language, but rather the SME’s knowledge being inaccessible to
conscious formulation (because it is embedded in perceptual or motor skills exercised in a
particular environment).

35
Approved for public release; distribution unlimited.

Figure 5: Screenshot of the BL-ISR Instructional Interface

To overcome this problem, the BL ISR instruction framework uses an instructional interface that
mimics the analyst’s work environment and ties instruction to the actions the analyst performs in
doing his or her work. Figure 5 shows the instructional interface used in BL ISR. There is a
map display showing tracks, structures, and other geographic features. The bottom panel displays
alerts about events. A typical analytic task is to select a particular event and learn more about it,
first by classifying it as a particular type of event and second by assessing whether there is anything
suspicious about the event that warrants further investigation. The analyst can fill in this
information in fields on the right-hand side of the Alerts panel. The interface also allows the analyst
to switch to Instructional mode, in which she instructs an e-student in the rules used in making
classifications and assessing suspiciousness (more detailed scenarios can be found in the ISR Jr
User’s manual). The instruction is situated in a concrete environment familiar to the analyst and
elicits knowledge from the analyst in the context of the same actions the analyst normally performs
in doing his or her analysis. The burden of articulating rules is eased by
virtue of applying machine learning to concrete examples, while at the same time the number of
training examples needed is minimized through the instructor’s guidance toward the right rules.

4.7 Evaluation

We utilized several methods to evaluate different aspects of the BL program, including studies to
explore approaches that humans take in teaching other humans as well as approaches they might
take in teaching an e-student (Section 4.7.1), establishing human-performance baselines on the

36
Approved for public release; distribution unlimited.

hidden domain (Section 4.7.2), and automated testing of the e-student on the hidden domain
(Section 4.7.3).

4.7.1 Approaches to Instruction (Phase 1)
In Phase 1 we undertook two studies to explore approaches humans take for instructing others.
The first explored human-human instruction; the second investigated human-e-student instruction.
In this section we present a summary of our findings. Our published papers [16, 17,
18] and BAE Systems technical reports [19, 20, 21, 22] provide details of the protocols and
results.

The focus of the first study was to compare human instruction of other humans to the instruction
types specified by the NIM created for the Bootstrapping Learning Project. It examined three
transcripts collected from other sources [23, 24, 25], capturing three types of interaction: human-
human interaction, naïve human interaction with a human tutor disguised as a machine, and
human tutoring with an interlocutor (not actually a student) present. We found examples of all
NIMs within the corpora. In addition, we noted a number of social aspects to the interactions
(e.g., hedging, humor, and exclamations of surprise) that would not necessarily be exhibited in
human-e-student instruction. It remains an open question as to whether social considerations
should be incorporated into a BL system.

The focus of the second study was to gain insight into how a human teacher would instruct an e-
student [16]. Personnel from the University of Texas at Austin and Cycorp performed an initial
case study using Blocks World as the domain, echoing the initial curriculum development for the
e-student, and a Wizard of Oz (WOz) [26] methodology in which a human teacher’s instruction
were translated into IL for the e-student by a human translator. In addition to the quantitative data
(e.g., methods used, teaching time, and e-student performance) they collected qualitative data
about their experience, any difficulties they encountered, and their model of the e-student both
before and after the teaching session. Five subjects participated, attempting to instruct the
e-student in two tasks – how to construct a stack of three blocks, and how to build a simple
doorway by placing a lintel across two stacks of blocks. Each subject was asked to assume the
role of a human teacher, and was told that the e-student could be considered on the same level as
that of a bright two year old. All five subjects succeeded in their instruction. Table 1 summarizes
our observations of the experiment.

Table 1: WOz Observations for a Human Teacher Instructing an E-Student

Observation Impact

All of the human teachers ended up
using a bottom-up approach to teaching
(possibly due to capabilities of the e-
student). Some human teachers initially
used a top-down approach but became
frustrated and reverted to a bottom up
approach.

All BL curricula to date have been authored using a
bottom-up structure. In the Phase II and Phase III
evaluations with human learners (rather than e-
students), we have found that human subjects often
prefer a top-down instructional method. It is an open
question as to how an e-student might learn with a
different lesson structure.

All of the human teachers overestimated
what the e-student knew and could do,
assuming knowledge of primitives such
as “choose a block” or “look for a clear

We believe the domain-independent e-student needs a
minimal level of injected knowledge to support
“basic human competencies”. This can be achieved
through the use of background knowledge which can

37
Approved for public release; distribution unlimited.

space.” be injected or built into an e-student.

Many of the human teachers employed
repetition and mnemonics when
teaching.

Instructional interfaces should support natural human
methods for teaching, including support for
informalities. The Curriculum Team is currently
exploring this issue.

The human teachers differed in their
assumptions regarding the linguistic
capabilities of the e-student.

Instructional interfaces should mask the linguistic
limitations of an e-student and/or a teacher should
have a way to query an e-students capabilities and
understanding.

4.7.2 Human Benchmark Experiments (Phases 2 and 3)
In addition to concerns about whether the HD presented an adequate test of scaling scope,
concerns also arose in Phase 2 regarding whether the learning requirements of the BL program
were in fact within the range of capabilities of a competent human adult. In order to address these
concerns, personnel at BAE Systems, Cycorp and the University of Texas at Austin collaborated
on adapting the HD curriculum to a multimedia training regimen for human students. Study of the
outcome of this training showed that human competences with respect to the adapted human
curriculum were sufficient for the tasks, and in some respects, far in advance of the abilities
exhibited by any of the automated learners (for example, the human learners propensity for
converging to appropriate conditional inductions made it possible to entirely dispense with Unit 4
in the human curriculum). Programmatic interest in the strengths and weaknesses of human
learners as compared with machine learners justified continuing human subject testing and study
throughout Phase 3. We published the results of these experiments [16,
18]; the detailed reports are in BAE Systems technical reports [19, 20, 21, 22]. In this section we
provide highlights of our findings.

Our primary results established the passing threshold requirement for e-student performance. In
Phase 2, 28 human subjects participated, establishing a baseline performance requirement of
91%. In Phase 3, 19 human subjects were tested on the full curriculum, establishing a baseline
performance requirement of 81%. An additional 40 subjects were tested on subsets of the
curriculum to investigate NIM-effectiveness. In addition to these baseline requirements for the
e-student, we identified a number of lessons learned in developing the protocols to conduct our
experiments and fairly compare human and e-student performance. Human and e-students differ
in fundamental ways that make it difficult to create analogous contexts without providing one side
with undue advantages over the other.

First, e-students have perfect memory of all lesson material they have seen. We compensated for
this in human testing by allowing subjects to take notes and review lessons if desired. Human
students also have a harder time interpreting formal language or concepts expressed in other
“unnatural” ways. Because of this, we were forced to produce a more natural version of the e-
student curriculum for the human students, introducing possible confounding factors into the
comparison. On the other hand, human students have a greater understanding of the semantics of
words and have the ability to gain domain knowledge outside the formal channel of the
curriculum, such as through voice intonation or gestures inadvertently expressed by a human
teacher. We addressed the issue of leaky semantics by being careful that our choice of terms
didn’t leak unintentional knowledge, and also by going through several preliminary iterations of

38
Approved for public release; distribution unlimited.

the curriculum. Interestingly, increased semantic understanding was also occasionally
detrimental to human subjects, when the knowledge leaked by terms was misleading.

4.7.3 BL Student Performance (Phases 2 and 3)
For the e-student, the performance on the final exam in Phase II was 100%. In Phase III, the e-
student was able to complete all of the tasks correctly. However, when a penalty is introduced for
rungs that had to be injected, rather than learned, the performance is reduced to 94% (i.e., (rungs –
injections) / rungs). That is, for 5 of the 7 final exam problems there was one rung where the e-
student was unable to learn the concept and was supplied with the concept description (injected)
so the e-student was able to continue onto other rungs. It is important to note that in Phase III the
student was only tested with the relaxed formalisms and the additional Unit 6 on trigger
conditions. The e-student was not tested on the updated repair procedures in Unit 3 or monitoring
the time bias in Unit 7. Additionally, in both phases of testing we collected several informal
testing results, including intermediate rung tests, individual NIM-effectiveness, and diversity
domain testing results [27, 28, 29, 30, 31, 32].

4.8 Seedling Efforts

In this section we provide an overview of the findings from two seedling efforts: Framework
Adoption (Section 4.8.1) and PROWL (Section 4.8.2). Additional details can be found in BAE
Systems technical reports [33, 34].

4.8.1 Framework Adoption
The Framework Adoption seedling effort resulted in a survey of recent research related to
framework adoption, the development of a prototype Eclipse-based Integrated Development
Environment (IDE) plug-in, the development of an example system with the widely used
Hibernate persistence framework along with a scenario for demonstration, and a summary report
[33]. The survey indicated that there is much new research in the topic of mining source code
repositories for patterns that has yet to be harnessed for the purpose of distributing knowledge and
integration into the user experience. The prototype IDE plug-in successfully demonstrated real-
time monitoring of user programming focus, recognition of patterns from a pattern repository,
and recommendation of the most relevant pattern. The example system, along with the tasks for a
demonstration scenario and experimental protocol, outline an exploratory investigation of how
users would interact with a framework adoption system.

4.8.2 PROWL
Under the first thrust, we investigated PROWL concepts using Army Knowledge Online (AKO).
In retrospect, AKO may not have been the optimal choice for a vehicle to demonstrate the
PROWL concepts. The AKO system has received substantial criticism with regards to its speed,
various areas of functionality, complex security requirements, effectiveness, and compatibility
with web browsers, particularly from its daily users. The PROWL team also encountered
significant resistance from users to supporting our experiments, probably due to the ongoing
performance problems and dissatisfaction with the existing user population with AKO in general.
Nevertheless, the concepts described and investigated under this seedling have demonstrated the
promise of this approach applied to large, enterprise text corpora.

39
Approved for public release; distribution unlimited.

Under Thrust 2 we explored three broad areas associated with crowd-based activity grounded in
a military context:

 Shared Sensing – patrollers can see location of other team members and any points of
interest or adversarial agents they mark up in the environment

 Coordinated Action – patrollers act in concert with others to achieve a goal, and are able
to rapidly and continually replan in response to the changing conditions

 Collective Reasoning – patrollers and their leaders respond to strategic and tactical goals
and collectively analyze new information by marking up the virtual space in real time

We developed seven uses cases, including one based on a real-world example. We also
identified two supporting technologies, available today, that would support and enable a
PROWL-like system to be developed and deployed [34].

40
Approved for public release; distribution unlimited.

5.0 Conclusions and Recommendations

The BL electronic student brings virtually no domain knowledge to its learning tasks. The only
knowledge built-in to the system (i.e., the only place where it depends on the actual “spelling” of
terms used in the ITL) is with respect to a limited number of control keywords in the ITL (e.g.,
“utterance” or “imperative”). To repeat, no domain knowledge is built in to the learner, it must
either be taught or provided as background input knowledge. Because of this, the electronic
learner can be viewed as applying weak methods to solve a domain independent learning problem.
This view raises interesting questions about the adequacy of information that can be conveyed via
syntactic structure (i.e., the electronic learner would have learned the exact same concepts had we
uniformly encoded terms in the curriculum that mean something to humans and replaced them
with syntactic gobbledygook).

Both the human subject testing and DD-HD comparison efforts of BL raise larger questions
about the semantic basis for comparing curriculum frameworks. In comparing two curricula, two
rungs, or two lessons, a fundamental question that must be asked is whether such similarity or
degree of complexity as is identified is relevant to the cognitive architecture of the student. Where
complexity is measured in syntactic terms (for example, nesting depth of logical operators), it is at
least possible that a student’s internal representation might be such that external expressions with
distinct syntactic complexity would map onto internally isomorphic student representations:
depending on the student’s processing requirements (and of course,
upon the intrinsic cost associated with the mapping), the student might therefore be indifferent to
overt differences in external complexity. And where information is measured probabilistically,
utilizing metrics explicated by Claude Shannon, it is worth reminding ourselves that these
probabilities are calculated with reference to a possibility-space that reflects some agent’s model
of what features are relevant and what world states are and are not possible: ‘information value’
is still computed relative to the world model of the agent. Although our curriculum comparison
efforts assumed that the SRI student’s learning biases essentially approximated those of a
suitably skilled human, this is really an open question amenable to further study. Also, one of
the intriguing indications to emerge from the Phase 2 analysis and subsequent DD and HD
testing is that there may be complementary domains of complexity such that simplification in
one area is possible only through incurring some representational cost in some other, so that
hidden expenses may attend many, and perhaps most methodologies for simplifying definitions –
e.g., eliminating step-wise sequences inside of while loops to accommodate known limitations of
learning modules may come at a price of introducing a higher ‘nesting factor’ for the target
definition overall, which might in turn pose difficulties for other learning modules. Phases 2 and
3 provided us with almost no empirical data regarding questions of how or indeed, whether, such
representational changes impacted performance in the MABLE system, so this would therefore
seem to be a rich field for future scientific investigation.

Finally, a fundamental feature of the IL framework is that the same world model to which the
student has access as background knowledge is also accessed by the teacher, and to implement
the actions of the world agent. Among other things, this helps to insure the percepts that the
world agent produces are structured in a way that demonstrably conforms with both the ITL
explanations generated by the teacher and the target IL definitions that the student is expected to
compile as the result of the curriculum. It is obvious, however, that the ubiquity of this

41
Approved for public release; distribution unlimited.

framework could not be maintained in a scenario wherein the electronic teacher was replaced
with a human trainer, just as scaling to real-world applications would entail replacing the IL
world agent with the real world. In such circumstances, even the relative guarantee that the
teacher and student share a common representational framework would be lost (even if the
teacher were to use a controlled vocabulary, there would no longer exist a canonical template in
the form of a common world model against which to test this vocabulary to insure that it is
deterministically translatable into a defCode implementation). In addition, the real-world
extension faces the added challenge of insuring that the structures in the actual world that the
student and teacher manipulate generate a percept stream that is intelligible for both the teacher
and the student. Such interoperability issues constitute a critical research topic for automated
learning.

Even with the above caveats, the BL program did demonstrate perhaps surprisingly good and
general results on both the Phase 2 and Phase 3 hidden domains. These results lend credibility to
the instructional approach to learning. In addition to the limitations mentioned above there also
remains the issue of how a learner can produce a result that is deployable in a useful operational
context. In the BL program the learner simply produced an IL program that was executable in a
suitable context (e.g., to compute a result, answer a test question, or execute a procedure in the
simulated world). In the real world a learning system would have to deploy its results in some
specifically suitable context (e.g., as an executable plugin in some larger performance system, as
a command sequence to some robotic device, or perhaps as a set of instructions to be performed
by a human co-agent). The domain independent success and the above limitations point to an
opportunity to apply the Bootstrapped Learning technologies in a single, specific learning
environment. Rather than strive for the breadth of applicability as in the original program,
focusing on learning and performance in a specific domain (e.g., ISR analysis) would provide the
opportunity to overcome the limitations discussed above, stretch the bootstrapping approach to
an extended training regimen (extended over both time and conceptual coverage), and provide
the opportunity to assess success in a concrete domain with specific success criteria.

42
Approved for public release; distribution unlimited.

BIBLIOGRAPHY
1. Oblinger, D., 2006, “Bootstrapped Learning: Creating the Electronic Student that Learns

from Natural Instruction,” AAAI Briefing,
http://www.darpa.mil/ipto/programs/bl/docs/AAAI_Briefing.pdf.

2. Mailler, R., Bryce, D., Shen, J., and O’Reilly, C., 2009, “MABLE: A Framework for Learning
from Natural Instruction,” In Proceedings of 8th Int. Conf. on Autonomous Agents and
Multiagent Systems (AA- MAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May,
10– 15, 2009, Budapest, Hungary.

3. Morrison, C., Bryce, D., Fasel, I., and Rebguns, A., 2009, “Augmenting Instructable
Computing with Planning Technology.” In ICAPS ’09 Workshop on the International
Competition for Knowledge Engineering in Planning and Scheduling.

4. Natarajan, S., Kunapuli, G., Page, D., Walker, T., O’Reilly, C., and Shavlik, J., 2010,
“Learning from human teachers: Issues and challenges in bootstrap learning,” In AAMAS
2010 Workshop on Agents Learning Interactively from Human Teachers, www.ifaamas.org.

5. Curtis, J., 2009, “Bootstrapped Learning Interaction Language,” BAE Systems Technical
Report TR-2231, December 2009.

6. Curtis, J., 2008, “Bootstrapped Learning Interlingua Transparent ‘Starter’ Languages,” BAE
Systems Technical Report TR-2239, June 2008.

7. Blaylock, N., Curtis, J., Kahlert, R., Shepard, B., 2007, “Bootstrapped Learning Interlingua
Parsing and Printing,” BAE Systems Technical Report TR-2178, 2007.

8. Curtis, J., Reubenstein, H., 2009, “Bootstrapped Learning Curriculum Language,” BAE
Systems Technical Report, April 2009.

9. BAE Systems, 2012, “Bootstrapped Learning: Natural Instruction Method (NIM)
Documentation,” BAE Systems Technical Report TR-2766, January 2012.

10. BAE Systems, 2012, “Bootstrapped Learning: Domain Documentation,” BAE Systems
Technical Report TR-2767, January 2012.

11. Ludwig, J., Mohammed, J., and Ong, J., 2010, “Developing an international space station
curriculum for the bootstrapped learning program,” In Proceedings of the March, 2010 IEEE
Aerospace Conference, Big Sky, MT.

12. Mohammed, J., Davis, A., Ludwig, J., 2009, “System Design for Hidden Domain Curriculum
and Simulator,” BAE Systems Technical Report, 2009.

13. Ludwig, J., Davis, A., Abrams, M., Curtis, J., 2011, “A Hidden Domain for Human and
Electronic Students,” in 2011 IJCAI Workshop on Agents Learning Interactively from
Human Teachers (ALIHT), July 2011.

14. Baxter, D., Frederiken, A., R., 2011, “ISR Jr. User Manual,” BAE Systems Technical Report
TR-2750, October 2011.

15. Gluck, M., Mercado, E., Myers, C., “Learning and Memory: From Brain to Behavior,”
Worth Publishers, 2007.

16. Berland, M., and Perry, D., 2009, “Novice Human Teachers of a Virtual Toddler: A Case
Study,” Technical Report, The University of Texas at Austin.
http://www.ece.utexas.edu/~perry/work/papers/090123-MB-blexp1.pdf

17. Grant, R., DeAngelis, D., Luu, D., Perry, D., Ryall, K., 2011, “Designing Human Benchmark
Experiments for Testing Software Agents,” In Proceedings of the 14th International
Conference on Evaluation and Assessment in Software Engineering (to appear), BCS eWIC.

43
Approved for public release; distribution unlimited.

18. Grant, R., DeAngelis, D., Luu, D., Perry, D., and Ryall, K., 2011, “Designing Human
Benchmark Experiments for Testing Software Agents,” In Proceedings of EASE April, 2011,
Durham UK.

19. Perry, D., Sidner, C., 2008, “A Basic Plan for Human and Automated Student Comparison,”
BAE Technical Report TR-2224, November 2008.

20. Grant, R., DeAngelis, D., Luu, D., Perry, D., 2009, “Automated Student Human Benchmark
Study: Phase II Report,” BAE Systems Technical Report, 2009.

21. Perry, D., E., 2010, “A Plan for an Automated Student Benchmark Study Phase 3,” BAE
Systems Technical Report, June 2010.

22. Grant, R., DeAngelis, D., Luu, D., Perry, D., 2010, “Automated Student Human Benchmark
Study: Phase III Report,” BAE Systems Technical Report TR-2659, December 2010.

23. Cohen, P., 1984, “Pragmatics, Speaker Reference, and the Modality of Communication,”
Laboratory for Artificial Intelligence Research.

24. Johnson, L., 2008, “Chat Study, Virtual Factory Teaching System,” Personal communication
with Lewis Johnson, Allelo Corporation, 2008.

25. Einstein, J., 2008, “Gesture studies transcripts,” Personal communication, MIT.
26. Dahlback, N., Jonsson, A., and Ahrenberg, L., 1993, “Wizard of Oz studies – Why and How.

Knowledge-Based Systems,” 6(4):258 – 266, 1993. ISSN 0950-7051. Doi:
DOI:10.1016/0950-7051(93)90017-N. Special Issue: Intelligent User Interfaces.

27. Sidner, C., and Stromsten, S., 2008, “Evaluation Plan for an Electronic Student in
Bootstrapped Learning,” BAE Systems Technical Report TR-2172, April 2008.

28. Sidner, C., and Stromsten, S., 2008, “Evaluation of the Bootstrapped Learning Student Phase
1,” BAE Systems Technical Report TR-2313, October 2008.

29. BAE Systems, 2009, “Phase 2 Evaluation Plan for an Electronic Student in Bootstrapped
Learning,” BAE Systems Technical Report TR-2531, November 2009.

30. Roberts, B., 2010, “Phase 2 Evaluation of the Bootstrapped Learning Student,” BAE Systems
Technical Report TR-2553, February 2010.

31. BAE Systems, 2010, “Phase 3 Evaluation Plan for an Electronic Student in Bootstrapped
Learning,” BAE Systems Technical Report TR-2631, September 2010.

32. Abrams, M., Curtis, J., 2011, “Phase 3 Evaluation of the Bootstrapped Learning Student,”
BAE Systems Technical Report TR-2711, July 2011.

33. Sullivan, G., 2009, “Framework Adoption Seedling Report,” BAE Systems Technical Report
TR-2768, January 2009.

34. Stephenson, T., 2011, “PROWL Seedling Final Report,” BAE Systems Technical Report TR-
2769, December 2011.

44
Approved for public release; distribution unlimited.

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS
ACRONYM DESCRIPTION

AFRL Air Force Research Laboratory

AKO Army Knowledge Online

API Application Program Interface

ATF Armored Task Force

BL Bootstrapped Learning

BL-ISR Bootstrapped Learning Intelligence, Surveillance, and Reconnaissance

BLADE Bootstrapped Learning Analysis and Curriculum Development Environment

CDRL Contract Data Requirements List

CL Curriculum Language

DARPA Defense Advanced Research Projects Agency

DD Diversity Domain

GMTI Ground Moving Target Indicator

HD Hidden Domain

HUMINT Human Intelligence

I2O Information Innovation Office

IDE Integrated Development Environment

IED Improvised Explosive Device

IL InterLingua

ISR Intelligence, Surveillance, and Reconnaissance

ISS International Space Station

ITL InteracTion Language

Jr Junior

MA Massachusetts

MABLE Modular Architecture for Bootstrapped Learning Experiments

ML Machine Learning

NIM Natural Instruction Method

PROWL Probabilistic Relational Ontological Web Language

RDF Resource Description Framework

ROL Results of Learning

RT Relaxation Trajectory

SIGINT Signal Intelligence

SME Subject Matter Expert

TR Technical Report

UAV Unmanned Aerial Vehicle

45
Approved for public release; distribution unlimited.

ACRONYM DESCRIPTION

VA Virginia

WOz Wizard of Oz

	StmtACover
	NoticePgwoSigs
	SF298
	final

